×

Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities. (English) Zbl 1112.93019

Summary: The paper deals with the identification of Wiener systems having multisegment piecewise-linear nonlinearities. A special form of nonlinearity representation is used in the Wiener system description. The resulting output equation contains the least possible number of parameters required for the blocks of given system. The proposed iterative method enables simultaneous estimation of both the linear block parameters and all the parameters characterizing the nonlinearity, i.e., the slopes of linear segments and the constants determining the partition of domain. Limits for the constants are the only a priori knowledge required.

MSC:

93B30 System identification
93C10 Nonlinear systems in control theory
93E03 Stochastic systems in control theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Duwaish, H. N., A genetic approach to the identification of linear dynamical systems with static nonlinearities, Internat. J. Systems Sci., 31, 307-313 (2000) · Zbl 1080.93628
[2] Bai, E. W., Frequency domain identification of Wiener models, Automatica, 39, 1521-1530 (2003) · Zbl 1032.93010
[3] Barker, H. A.; Tan, A. H.; Godfrey, K. R., Wiener models of direction-dependent dynamic systems, Automatica, 39, 127-133 (2003) · Zbl 1006.93510
[4] Bershad, N. J.; Celka, P.; Vesin, J.-M., Analysis of stochastic gradient tracking of time varying polynomial Wiener systems, IEEE Trans. Signal Processing, 48, 1676-1686 (2000) · Zbl 0992.93093
[5] Billings, S. A.; Voon, W. S., Piecewise linear identification of non-linear systems, Internat. J. Control, 46, 215-235 (1987) · Zbl 0615.93070
[6] Bruls, J.; Chou, C. T.; Havenkamp, B. R.J.; Verhaegen, M., Linear and non-linear system identification using separable least-squares, European J. Control, 5, 116-128 (1999) · Zbl 0951.93020
[7] Castro, L. R.; Julian, P.; Agamennon, O.; Desages, A., Wiener modelling using canonical piecewise linear functions, Latin Amer. Appl. Res., 29, 265-272 (1999)
[8] Celka, P.; Bershad, N. J.; Vesin, J.-M., Stochastic gradient identification of polynomial Wiener systems: analysis and application, IEEE Trans. Signal Processing, 49, 301-313 (2001)
[9] Cervantes, A. L.; Agamennoni, O. E.; Figueroa, J. L., A nonlinear model predictive control system based on Wiener piecewise linear models, J. Process Control, 13, 655-666 (2003)
[10] Chidambaram, M., Computer Control of Processes (2001), CRC Press: CRC Press New York
[11] Fang, Y.; Chow, T. W.S., Orthogonal wavelet neural networks applying to identification of Wiener model, IEEE Trans. Circuits and Systems, 47, 591-593 (2000)
[12] Greblicki, W., Nonparametric approach to Wiener system identification, IEEE Trans. Circuits and Systems, 44, 538-545 (1997)
[13] Haber, R.; Keviczky, L., Nonlinear System Identification—Input-Output Modeling Approach (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dorchrecht, Boston, London · Zbl 0934.93004
[14] A. Hagenblad, Aspects of the identification of Wiener models, Licenciate Thesis, Department of Electrical Engineering, Linkoping University, Linkoping, Sweden, 1999.; A. Hagenblad, Aspects of the identification of Wiener models, Licenciate Thesis, Department of Electrical Engineering, Linkoping University, Linkoping, Sweden, 1999.
[15] Hasiewicz, Z.; Sliwinski, P., Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, Internat. J. Systems Sci., 33, 1121-1144 (2002) · Zbl 1060.93034
[16] Ikonen, E.; Najim, K., Non-linear process modelling based on a Wiener approach, Proc. Inst. Mechanical Eng.—J. Systems Control Eng., 215, 15-27 (2001)
[17] A. Janczak, Identification of nonlinear systems using neural networks and polynomial models: a block-oriented approach, Lecture Notes in Control and Information Sciences, vol. 310, Springer, Heidelberg, Berlin, 2005.; A. Janczak, Identification of nonlinear systems using neural networks and polynomial models: a block-oriented approach, Lecture Notes in Control and Information Sciences, vol. 310, Springer, Heidelberg, Berlin, 2005. · Zbl 1103.93023
[18] Jeng, J. C.; Lee, M. W.; Huang, H. P., Identification of block-oriented nonlinear processes using designed relay feedback tests, Indust. Eng. Chem. Res., 44, 2145-2155 (2005)
[19] Kalafatis, A. D.; Wang, L.; Cluett, W. R., Identification of Wiener-type nonlinear systems in a noisy environment, Internat. J. Control, 66, 923-941 (1997) · Zbl 0875.93079
[20] Kalaš, V.; Jurišica, L.; Žalman, M.; Almássy, S.; Siviček, P.; Varga, A.; Kalaš, D., Nonlinear and Numerical Servosystems (1985), Alfa/SNTL: Alfa/SNTL Bratislava, Slovakia, (in Slovak)
[21] Korenberg, M. J.; Hunter, I. W., Two methods for identifying Wiener cascades having noninvertible static nonlinearities, Ann. Biomedical Eng., 27, 793-804 (1999)
[22] Kung, M. C.; Womack, B. F., Discrete time adaptive control of linear dynamic systems with a two-segment piecewise-linear asymmetric nonlinearity, IEEE Trans. Automat. Control, 29, 170-172 (1984) · Zbl 0528.93045
[23] Lacy, S. L.; Bernstein, D. S., Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities, Internat. J. Control, 76, 1500-1507 (2003) · Zbl 1050.93074
[24] Lee, M. W.; Huang, H. P.; Jeng, J. C., Identification and controller design for nonlinear processes using relay feedback, J. Chem. Eng. Japan, 37, 1194-1206 (2004)
[25] Lee, Y. J.; Sung, S. W.; Park, S.; Park, S., Input test signal design and parameter estimation method for the Hammerstein-Wiener processes, Indust. Eng. Chem. Res., 43, 7521-7530 (2004)
[26] Menold, P. H.; Allgöwer, F.; Pearson, R. K., Nonlinear structure identification of chemical processes, Comput. Chem. Eng., 21, S137-S142 (1997)
[27] Nordsjö, A. E.; Zetterberg, L. H., Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Trans. Signal Processing, 49, 577-592 (2001)
[28] Norquay, S. J.; Palazoglu, L.; Romagnoli, J. A., Model predictive control based on Wiener models, Chem. Eng. Sci., 53, 75-84 (1998)
[29] Pajunen, G. A., Adaptive control of Wiener type nonlinear systems, Automatica, 28, 781-785 (1992) · Zbl 0765.93042
[30] Paulin, M. G., A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade, Biol. Cybernet., 69, 67-76 (1993) · Zbl 0775.92009
[31] Pearson, R. K., Nonlinear input/output modeling, J. Process Control, 5, 197-211 (1995)
[32] Pearson, R. K.; Pottmann, M., Gray-box identification of block-oriented nonlinear models, J. Process Control, 10, 301-315 (2000)
[33] Quaglini, V.; Previdi, F.; Contro, R.; Bittanti, S., A discrete-time nonlinear Wiener model for the relaxation of soft biological tissues, Medical Eng. Phys., 24, 9-19 (2002)
[34] Sun, L.; Ding, Y.; Sano, A., Identification-based predistortion scheme for high power amplifiers, IEICE Trans. Fund. Electron. Comm. Comput. Sci., E86A, 4, 874-881 (2003)
[35] Tao, G.; Tian, M., Discrete-time adaptive control of systems with multisegment piecewise-linear nonlinearities, IEEE Trans. Automat. Control, 43, 719-723 (1998) · Zbl 0912.93037
[36] J. Vörös, Identification of nonlinear dynamic systems using extended Hammerstein and Wiener models, Control-Theory and Adv. Tech. 10 (1995) Part 2 1203-1212.; J. Vörös, Identification of nonlinear dynamic systems using extended Hammerstein and Wiener models, Control-Theory and Adv. Tech. 10 (1995) Part 2 1203-1212.
[37] Vörös, J., Parameter identification of Wiener systems with discontinuous nonlinearities, Systems Control Lett., 44, 363-372 (2001) · Zbl 0986.93020
[38] Vörös, J., Modeling and parameter identification of systems with multisegment piecewise-linear characteristics, IEEE Trans. Automat. Control, 47, 184-188 (2002) · Zbl 1364.93173
[39] Wigren, T., Recursive prediction error identification using the nonlinear Wiener model, Automatica, 29, 1011-1025 (1993) · Zbl 0776.93006
[40] Y. Zhu, Parametric Wiener model identification for control, in: Proceedings of the 14th IFAC World Congress, Beijing, vol. H, 1999, pp. 37-42.; Y. Zhu, Parametric Wiener model identification for control, in: Proceedings of the 14th IFAC World Congress, Beijing, vol. H, 1999, pp. 37-42.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.