zbMATH — the first resource for mathematics

Handbook of Teichmüller theory. Volume I. (English) Zbl 1113.30038
IRMA Lectures in Mathematics and Theoretical Physics 11. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-029-6/hbk). viii, 794 p. (2007).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Daskalopoulos, Georgios D.; Wentworth, Richard A., Harmonic maps and Teichmüller theory, 33-109 [Zbl 1161.30032]
Papadopoulos, Athanase; Théret, Guillaume, On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space, 111-204 [Zbl 1129.30030]
Penner, Robert C., Surfaces, circles, and solenoids, 205-221 [Zbl 1182.30077]
Otal, Jean-Pierre, About the embedding of Teichmüller space in the space of geodesic Hölder distributions, 223-248 [Zbl 1140.30018]
Harvey, William J., Teichmüller spaces, triangle groups and Grothendieck dessins, 249-292 [Zbl 1146.30027]
Herrlich, Frank; Schmithüsen, Gabriela, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, 293-349 [Zbl 1141.30011]
Morita, Shigeyuki, Introduction to mapping class groups of surfaces and related groups, 353-386 [Zbl 1147.57001]
Mosher, Lee, Geometric survey of subgroups of mapping class groups, 387-410 [Zbl 1130.57002]
Marden, Albert, Deformations of Kleinian groups, 411-446 [Zbl 1182.30072]
Hamenstädt, Ursula, Geometry of the complex of curves and of Teichmüller space, 447-467 [Zbl 1162.32010]
Charitos, Charalampos; Papadoperakis, Ioannis, Parameters for generalized Teichmüller spaces, 471-506 [Zbl 1149.57029]
Troyanov, Marc, On the moduli space of singular Euclidean surfaces, 507-540 [Zbl 1127.32009]
Mercat, Christian, Discrete Riemann surfaces, 541-575 [Zbl 1136.30315]
Chekhov, Leonid O.; Penner, Robert C., On quantizing Teichmüller and Thurston theories, 579-645 [Zbl 1125.32007]
Fock, Vladimir V.; Goncharov, Alexander B., Dual Teichmüller and lamination spaces, 647-684 [Zbl 1162.32009]
Teschner, Jörg, An analog of a modular functor from quantized Teichmüller theory, 685-760 [Zbl 1129.30032]
Kashaev, Rinat M., On quantum moduli space of flat \(\mathrm{PSL}_2(\mathbb R)\)-connections on a punctured surface, 761-782 [Zbl 1133.58003]

30F60 Teichmüller theory for Riemann surfaces
32Gxx Deformations of analytic structures
14H15 Families, moduli of curves (analytic)
00B15 Collections of articles of miscellaneous specific interest
Full Text: DOI