×

zbMATH — the first resource for mathematics

Handbook of Teichmüller theory. Volume I. (English) Zbl 1113.30038
IRMA Lectures in Mathematics and Theoretical Physics 11. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-029-6/hbk). viii, 794 p. (2007).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Daskalopoulos, Georgios D.; Wentworth, Richard A., Harmonic maps and Teichmüller theory, 33-109 [Zbl 1161.30032]
Papadopoulos, Athanase; Théret, Guillaume, On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space, 111-204 [Zbl 1129.30030]
Penner, Robert C., Surfaces, circles, and solenoids, 205-221 [Zbl 1182.30077]
Otal, Jean-Pierre, About the embedding of Teichmüller space in the space of geodesic Hölder distributions, 223-248 [Zbl 1140.30018]
Harvey, William J., Teichmüller spaces, triangle groups and Grothendieck dessins, 249-292 [Zbl 1146.30027]
Herrlich, Frank; Schmithüsen, Gabriela, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, 293-349 [Zbl 1141.30011]
Morita, Shigeyuki, Introduction to mapping class groups of surfaces and related groups, 353-386 [Zbl 1147.57001]
Mosher, Lee, Geometric survey of subgroups of mapping class groups, 387-410 [Zbl 1130.57002]
Marden, Albert, Deformations of Kleinian groups, 411-446 [Zbl 1182.30072]
Hamenstädt, Ursula, Geometry of the complex of curves and of Teichmüller space, 447-467 [Zbl 1162.32010]
Charitos, Charalampos; Papadoperakis, Ioannis, Parameters for generalized Teichmüller spaces, 471-506 [Zbl 1149.57029]
Troyanov, Marc, On the moduli space of singular Euclidean surfaces, 507-540 [Zbl 1127.32009]
Mercat, Christian, Discrete Riemann surfaces, 541-575 [Zbl 1136.30315]
Chekhov, Leonid O.; Penner, Robert C., On quantizing Teichmüller and Thurston theories, 579-645 [Zbl 1125.32007]
Fock, Vladimir V.; Goncharov, Alexander B., Dual Teichmüller and lamination spaces, 647-684 [Zbl 1162.32009]
Teschner, Jörg, An analog of a modular functor from quantized Teichmüller theory, 685-760 [Zbl 1129.30032]
Kashaev, Rinat M., On quantum moduli space of flat \(\mathrm{PSL}_2(\mathbb R)\)-connections on a punctured surface, 761-782 [Zbl 1133.58003]

MSC:
30F60 Teichmüller theory for Riemann surfaces
32Gxx Deformations of analytic structures
14H15 Families, moduli of curves (analytic)
00B15 Collections of articles of miscellaneous specific interest
PDF BibTeX XML Cite
Full Text: DOI