zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations. (English) Zbl 1113.34058
This paper studies practical stability of solutions of nonlinear impulsive functional differential equations. The obtained results are based on the method of vector Lyapunov functions and on differential inequalities for piecewise continuous functions. Examples are given to illustrate the obtained results.

34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
Full Text: DOI
[1] Anokhin, A. V.: On linear impulsive systems for functional differential equations. Soviet math. Dokl. 33, 220-223 (1986) · Zbl 0615.34064
[2] Azbelev, N. A.; Maksimov, V. P.; Rakhmatullina, L. F.: Introduction to the theory of functional differential equations. (1991) · Zbl 0725.34071
[3] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect: stability theory and applications. (1989) · Zbl 0676.34035
[4] Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations: periodic solutions and applications. (1993) · Zbl 0815.34001
[5] Bainov, D. D.; Stamova, I. M.: Global stability of the solutions of impulsive differential-difference equations with variable impulsive perturbations. Compel 1, 3-16 (1997) · Zbl 0882.34075
[6] Bainov, D. D.; Stamova, I. M.: Strong stability of impulsive differential-difference equations. Panamer. math. J. 9, 87-95 (1999) · Zbl 0960.34064
[7] Bainov, D. D.; Stamova, I. M.: Stability of the solutions of impulsive functional differential equations by Lyapunov’s direct method. Anziam j. 2, 269-278 (2001) · Zbl 0996.34065
[8] Gopalsamy, K.; Zhang, B. G.: On delay differential equation with impulses. J. math. Anal. appl. 139, 110-122 (1989) · Zbl 0687.34065
[9] Hale, J. K.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[10] Hale, J. K.; Lunel, V.: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[11] Kato, J.: Stability problems in functional differential equation with infinite delays. Funkcial. ekvac. 21, 63-80 (1978) · Zbl 0413.34076
[12] Kolmanovskii, V. B.; Nosov, V. R.: Stability of functional differential equations. (1986) · Zbl 0593.34070
[13] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[14] Lakshmikantham, V.; Leela, S.; Martynyuk, A. A.: Practical stability analysis of nonlinear systems. (1990) · Zbl 0753.34037
[15] Lakshmikantham, V.; Matrosov, V. M.; Sivasundaram, S.: Vector Lyapunov functions and stability analysis of nonlinear systems. (1991) · Zbl 0721.34054
[16] Martynyuk, A. A.: Practical stability of motion. (1983) · Zbl 0539.70031
[17] A.A. Martynyuk, Practical stability conditions for hybrid systems, 12th World Congress of IMACS, Paris, 1988, pp. 344 -- 347 (in Russian)
[18] Rao, M. Rama Mohana; Srivastava, S. K.: Stability of Volterra integro-differential equations with impulsive effect. J. math. Anal. appl. 163, 47-59 (1992) · Zbl 0755.45014
[19] Razumikhin, B. S.: Stability of systems with retardation. (1988)
[20] Samoilenko, A. M.; Perestyuk, N. A.: Differential equations with impulse effect. (1987)
[21] Shen, J.; Yan, J.: Razumikhin type stability theorems for impulsive functional differential equations. Nonlinear anal. 33, 519-531 (1998) · Zbl 0933.34083
[22] Simeonov, P. S.; Bainov, D. D.: Stability with respect to part of the variables in systems with impulse effect. J. math. Anal. appl. 117, 247-263 (1986) · Zbl 0588.34044
[23] Stamova, I. M.; Stamov, G. T.: Lyapunov -- razumikhin method for impulsive functional differential equations and applications to the population dynamics. J. comput. Appl. math. 130, 163-171 (2001) · Zbl 1022.34070
[24] Yan, J.; Shen, J.: Impulsive stabilization of impulsive functional differential equations by Lyapunov -- razumikhin functions. Nonlinear anal. 37, 245-255 (1999) · Zbl 0951.34049