[1] |
Ball, J. M.: J. nonlinear sci.. 8, 233 (1998) |

[2] |
Caraballo, T.; Marn-Rubio, P.; Robinson, J. C.: A comparison between two theories for multi-valued semiflows and their asymptotic behavior. Set-valued anal. 11, 297-322 (2003) · Zbl 1053.47050 |

[3] |
Chepyzhov, V. V.; Vishik, M. I.: Attractors for equations of mathematical physics. Amer. math. Soc. colloq. Publ. 49 (2002) · Zbl 0986.35001 |

[4] |
A. Cheskidov, Blow-up in finite time for the dyadic model of the Navier -- Stokes equations, Trans. Amer. Math. Soc., in press · Zbl 1156.35073 |

[5] |
Constantin, P.; Foias, C.: Navier -- Stokes equation. (1989) |

[6] |
Flandoli, F.; Schmalfuß, B.: Weak solutions and attractors for three-dimensional Navier -- Stokes equations with nonregular force. J. dynam. Differential equations 11, 355-398 (1999) · Zbl 0931.35124 |

[7] |
Foias, C.; Manley, O. P.; Rosa, R.; Temam, R.: Navier -- Stokes equation and turbulence. Encyclopedia of mathematics and its applications 83 (2001) |

[8] |
Foias, C.; Temam, R.: The connection between the Navier -- Stokes equations, and turbulence theory. Directions in partial differential equations, 55-73 (1985) |

[9] |
Friedlander, S.; Pavlović, N.: Blowup in a three-dimensional vector model for the Euler equations. Comm. pure appl. Math. 57, 705-725 (2004) · Zbl 1060.35100 |

[10] |
Hale, J. K.: Asymptotic behavior of dissipative systems. (1988) · Zbl 0642.58013 |

[11] |
Hale, J. K.; Lasalle, J. P.; Slemrod, M.: Theory of a general class of dissipative processes. J. math. Anal. appl. 39, 177-191 (1972) · Zbl 0238.34098 |

[12] |
Kukavica, I.: Role of the pressure for validity of the energy equality for solutions of the Navier -- Stokes equation. J. dynam. Differential equations 18, 461-482 (2006) · Zbl 1105.35081 |

[13] |
Katz, N. H.; Pavlović, N.: Finite time blow-up for a dyadic model of the Euler equations. Trans. amer. Math. soc. 357, 695-708 (2005) · Zbl 1059.35096 |

[14] |
Ladyzhenskaya, O. A.: On the dynamical system generated by the Navier -- Stokes equations. J. sov. Math. 3, 458-479 (1975) · Zbl 0336.35081 |

[15] |
Ladyzhenskaya, O. A.: Attractors for semigroups and evolution equations. (1991) · Zbl 0755.47049 |

[16] |
Melnik, V. S.; Valero, J.: On attractors of multivalued semi-flows and differential inclusions. Set-valued anal. 6, 83-111 (1998) · Zbl 0915.58063 |

[17] |
Raugel, G.; Sell, G. R.: Navier -- Stokes equations on thin 3D domains, I: Global attractors and global regularity of solutions. J. amer. Math. soc. 6, 503-568 (1993) · Zbl 0787.34039 |

[18] |
R.M.S. Rosa, Asymptotic regularity condition for the strong convergence towards weak limit sets and weak attractors of the 3D Navier -- Stokes equations, J. Differential Equations, in press · Zbl 1111.35039 |

[19] |
Sell, G. R.: Global attractors for the three-dimensional Navier -- Stokes equations. J. dynam. Differential equations 8, 1-33 (1996) · Zbl 0855.35100 |

[20] |
Sell, G. R.; You, Y.: Dynamics of evolutionary equations. Appl. math. Sci. 143 (2002) · Zbl 1254.37002 |

[21] |
Temam, R.: Infinite dimensional dynamical systems in mechanics and physics. Appl. math. Sci. 68 (1988) · Zbl 0662.35001 |

[22] |
Temam, R.; Ziane, M.: Navier -- Stokes equations in three-dimensional thin domains with various boundary conditions. Adv. differential equations 1, 499-546 (1996) · Zbl 0864.35083 |