×

zbMATH — the first resource for mathematics

Invariant manifolds for stochastic wave equations. (English) Zbl 1113.37056
Summary: We consider a class of stochastic wave equations with nonlinear multiplicative noise. We first show that these stochastic wave equations generate random dynamical systems (or stochastic flows) by transforming the stochastic wave equations to random wave equations through a stationary random homeomorphism. Then, we establish the existence of random invariant manifolds for the random wave equations. Due to the temperedness of the nonlinearity, we obtain only local invariant manifolds no matter how large the spectral gap is unlike the deterministic cases. Based on these random dynamical systems, we prove the existence of random invariant manifolds in a tempered neighborhood of an equilibrium. Finally, we show that the images of these invariant manifolds under the inverse stationary transformation give invariant manifolds for the stochastic wave equations.

MSC:
37L55 Infinite-dimensional random dynamical systems; stochastic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, L., Random dynamical systems, (1998), Springer-Verlag New York
[2] Bensoussan, A.; Flandoli, F., Stochastic inertial manifold, Stochastics rep., 53, 1-2, 13-39, (1995) · Zbl 0854.60059
[3] Caraballo, T.; Chueshov, I.; Langa, J., Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18, 2, 747-767, (2005) · Zbl 1071.35130
[4] Caraballo, T.; Kloeden, P.; Schmalfuß, B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. math. optim., 50, 3, 183-207, (2004) · Zbl 1066.60058
[5] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions, Lecture notes in math., vol. 580, (1977), Springer-Verlag Berlin · Zbl 0346.46038
[6] Chow, S.-N.; Lin, X.-B.; Lu, K., Smooth invariant foliations in infinite-dimensional spaces, J. differential equations, 94, 2, 266-291, (1991) · Zbl 0749.58043
[7] Chow, S.-N.; Lu, K., Invariant manifolds for flows in Banach spaces, J. differential equations, 74, 285-317, (1988) · Zbl 0691.58034
[8] Chueshov, I.D.; Girya, T.V., Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sb. math., 186, 1, 29-45, (1995) · Zbl 0851.60036
[9] Chueshov, I.D.; Scheutzow, M., Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. dynam. differential equations, 13, 355-380, (2001) · Zbl 0990.37041
[10] Da Prato, G.; Zabczyk, J., Stochastic equations in infinite dimensions, (1992), Cambridge Univ. Press Cambridge · Zbl 0761.60052
[11] Da Prato, G.; Debusshe, A., Construction of stochastic inertial manifolds using backward integration, Stochastics rep., 59, 3-4, 305-324, (1996) · Zbl 0876.60040
[12] Duan, J.; Lu, K.; Schmalfuß, B., Invariant manifolds for stochastic partial differential equations, Ann. probab., 31, 4, 2109-2135, (2003) · Zbl 1052.60048
[13] Duan, J.; Lu, K.; Schmalfuß, B., Smooth stable and unstable manifolds for stochastic evolutionary equations, J. dynam. differential equations, 16, 4, 949-972, (2004) · Zbl 1065.60077
[14] Flandoli, F.; Lisei, H., Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications, Stoch. anal. appl., 22, 6, 1385-1420, (2004) · Zbl 1063.60089
[15] Hale, J., Asymptotic behavior of dissipative systems, Math. surveys and monographs, vol. 25, (1988), American Mathematical Society Providence, RI · Zbl 0642.58013
[16] Henry, D., Geometric theory of semilinear parabolic equations, Lecture notes in math., vol. 840, (1981), Springer-Verlag Berlin · Zbl 0456.35001
[17] H. Keller, Attractors of second order stochastic differential equations. PhD thesis, Universität Bremen, 2002 · Zbl 1094.60503
[18] Keller, H.; Schmalfuß, B., Attractors for stochastic differential equations with nontrivial noise, Izv. akad. nauk RM, 26, 43-54, (1998)
[19] Liu, P.; Qian, M., Smooth ergodic theory of random dynamical systems, Lecture notes in math., vol. 1606, (1995), Springer-Verlag Berlin · Zbl 0841.58041
[20] S. Mohammed, T. Zhang, H. Zhao, The stable manifold theorem for semilinear SPDEs, preprint 2003
[21] Øksendale, B., Stochastic differential equations, (1992), Springer-Verlag
[22] Kunita, H., Stochastic flows and stochastic differential equations, (1990), Cambridge Univ. Press Cambridge · Zbl 0743.60052
[23] Mohammed, S.-E.A.; Scheutzow, M.K.R., The stable manifold theorem for stochastic differential equations, Ann. probab., 27, 2, 615-652, (1999) · Zbl 0940.60084
[24] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Appl. math. sci., vol. 44, (1983), Springer-Verlag New York · Zbl 0516.47023
[25] Renardy, M.; Rogers, R.C., Introduction to partial differential equations, (1993), Springer-Verlag Berlin · Zbl 0917.35001
[26] Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. of math., 115, 2, 243-290, (1982) · Zbl 0493.58015
[27] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, (1988), Springer-Verlag Berlin · Zbl 0662.35001
[28] Ulam, S.M.; von Neumann, J., Random ergodic theorems, Bull. amer. math. soc., 51, 660, (1945)
[29] Wanner, T., Linearization of random dynamical systems, (), 203-269 · Zbl 0824.34069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.