zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
High-dimensional graphs and variable selection with the Lasso. (English) Zbl 1113.62082
Summary: The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a computationally attractive alternative to standard covariance selection for sparse high-dimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We show that the proposed neighborhood selection scheme is consistent for sparse high-dimensional graphs. Consistency hinges on the choice of the penalty parameter. The oracle value for optimal prediction does not lead to a consistent neighborhood estimate. Controlling instead the probability of falsely joining some distinct connectivity components of the graph, consistent estimation for sparse graphs is achieved (with exponential rates), even when the number of variables grows as the number of observations raised to an arbitrary power.

62H99Multivariate analysis
62J07Ridge regression; shrinkage estimators
05C90Applications of graph theory
62F12Asymptotic properties of parametric estimators
62H12Multivariate estimation
65C60Computational problems in statistics
62J05Linear regression
PDCO; lars
Full Text: DOI arXiv
[1] Buhl, S. (1993). On the existence of maximum-likelihood estimators for graphical Gaussian models. Scand. J. Statist. 20 263--270. · Zbl 0778.62046
[2] Chen, S., Donoho, D. and Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM Rev. 43 129--159. JSTOR: · Zbl 0979.94010 · doi:10.1137/S003614450037906X · http://links.jstor.org/sici?sici=0036-1445%28200103%2943%3A1%3C129%3AADBBP%3E2.0.CO%3B2-H&origin=euclid
[3] Dempster, A. (1972). Covariance selection. Biometrics 28 157--175.
[4] Drton, M. and Perlman, M. (2004). Model selection for Gaussian concentration graphs. Biometrika 91 591--602. · Zbl 1108.62098 · doi:10.1093/biomet/91.3.591
[5] Edwards, D. (2000). Introduction to Graphical Modelling , 2nd ed. Springer, New York. · Zbl 0952.62003 · doi:10.1007/978-1-4612-0493-0
[6] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407--499. · Zbl 1091.62054 · doi:10.1214/009053604000000067
[7] Frank, I. and Friedman, J. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics 35 109--148. · Zbl 0775.62288 · doi:10.2307/1269656
[8] Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of over-parametrization. Bernoulli 10 971--988. · Zbl 1055.62078 · doi:10.3150/bj/1106314846
[9] Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R. and Kadie, C. (2000). Dependency networks for inference, collaborative filtering and data visualization. J. Machine Learning Research 1 49--75. · Zbl 1008.68132 · doi:10.1162/153244301753344614
[10] Juditsky, A. and Nemirovski, A. (2000). Functional aggregation for nonparametric regression. Ann. Statist. 28 681--712. · Zbl 1105.62338 · doi:10.1214/aos/1015951994 · euclid:aos/1015951994
[11] Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356--1378. · Zbl 1105.62357 · doi:10.1214/aos/1015957397
[12] Lauritzen, S. (1996). Graphical Models . Clarendon Press, Oxford. · Zbl 0907.62001
[13] Osborne, M., Presnell, B. and Turlach, B. (2000). On the lasso and its dual. J. Comput. Graph. Statist. 9 319--337. JSTOR: · doi:10.2307/1390657 · http://links.jstor.org/sici?sici=1061-8600%28200006%299%3A2%3C319%3AOTLAID%3E2.0.CO%3B2-M&origin=euclid
[14] Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486--494. JSTOR: · Zbl 0773.62051 · doi:10.2307/2290328 · http://links.jstor.org/sici?sici=0162-1459%28199306%2988%3A422%3C486%3ALMSBC%3E2.0.CO%3B2-C&origin=euclid
[15] Speed, T. and Kiiveri, H. (1986). Gaussian Markov distributions over finite graphs. Ann. Statist. 14 138--150. · Zbl 0589.62033 · doi:10.1214/aos/1176349846
[16] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267--288. JSTOR: · Zbl 0850.62538 · http://links.jstor.org/sici?sici=0035-9246%281996%2958%3A1%3C267%3ARSASVT%3E2.0.CO%3B2-G&origin=euclid
[17] van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics . Springer, New York. · Zbl 0862.60002