Lii, Keh-Shin; Rosenblatt, Murray Estimation for almost periodic processes. (English) Zbl 1113.62111 Ann. Stat. 34, No. 3, 1115-1139 (2006). Summary: Processes with almost periodic covariance functions have spectral mass on lines parallel to the diagonal in the two-dimensional spectral plane. Methods have been given for estimation of spectral mass on the lines of spectral concentration if the locations of the lines are known. Here methods for estimating the intercepts of the lines of spectral concentration in the Gaussian case are given under appropriate conditions. The methods determine rates of convergence sufficiently fast as the sample size \(n\to\infty\) so that the spectral estimation on the estimated lines can then proceed effectively. This task involves bounding the maximum of an interesting class of non-Gaussian possibly nonstationary processes. Cited in 12 Documents MSC: 62M15 Inference from stochastic processes and spectral analysis 62G05 Nonparametric estimation 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62M99 Inference from stochastic processes Keywords:almost periodic covariance; spectral estimation; periodogram; process maximum; Gaussian and non-Gaussian process; frequency detection and estimation × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alekseev, V. G. (1988). Estimating the spectral densities of a Gaussian periodically correlated stochastic process. Problems Inform. Transmission 24 109–115. · Zbl 0663.62047 [2] Brillinger, D. (1975). Time Series : Data Analysis and Theory . Holt, Rinehart and Winston, New York. · Zbl 0321.62004 [3] Dandawate, A. V. and Giannakis, G. B. (1994). Nonparametric polyspectral estimators for \(k\)th order (almost) cyclostationary processes. IEEE Trans. Inform. Theory 40 67–84. · Zbl 0803.94005 · doi:10.1109/18.272456 [4] Dehay, D. and Leskow, J. (1996). Functional limit theory for the spectral covariance estimator. J. Appl. Probab. 33 1077–1092. JSTOR: · Zbl 1002.60531 · doi:10.2307/3214987 [5] Gardner, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine 8 (2) 14–36. [6] Gardner, W. A., ed. (1994). Cyclostationarity in Communications and Signal Processing . IEEE Press, New York. · Zbl 0823.00029 [7] Gerr, N. and Allen, J. (1994). The generalized spectrum and spectral coherence of a harmonizable time series. Digital Signal Processing 4 222–238. [8] Gerr, N. and Allen, J. (1994). Time-delay estimation for harmonizable signals. Digital Signal Processing 4 49–62. [9] Gladyshev, E. G. (1963). Periodically and almost-periodically correlated random processes with a continuous time parameter. Theory Probab. Appl. 8 173–177. · Zbl 0138.11003 · doi:10.1137/1108016 [10] Hurd, H. (1989). Nonparametric time series analysis for periodically correlated processes. IEEE Trans. Inform. Theory 35 350–359. · Zbl 0672.62096 · doi:10.1109/18.32129 [11] Hurd, H. and Gerr, N. (1991). Graphical methods for determining the presence of periodic correlation. J. Time Ser. Anal. 12 337–350. · doi:10.1111/j.1467-9892.1991.tb00088.x [12] Hurd, H. and Leskow, J. (1992). Strongly consistent and asymptotically normal estimation of the covariance for almost periodically correlated processes. Statist. Decisions 10 201–225. · Zbl 0757.62045 [13] Hurd, H., Makagon, A. and Miamee, A. G. (2002). On AR(1) models with periodic and almost periodic coefficients. Stochastic Process. Appl. 100 167–185. · Zbl 1059.60045 · doi:10.1016/S0304-4149(02)00094-7 [14] Leskow, J. and Weron, A. (1992). Ergodic behavior and estimation for periodically correlated processes. Statist. Probab. Lett. 15 299–304. · Zbl 0765.62081 · doi:10.1016/0167-7152(92)90166-3 [15] Lii, K.-S. and Rosenblatt, M. (2002). Spectral analysis for harmonizable processes. Ann. Statist. 30 258–297. · Zbl 1012.62099 · doi:10.1214/aos/1015362193 [16] Loève, M. (1963). Probability Theory , 3rd ed. Van Nostrand, Princeton, NJ. · Zbl 0095.12201 [17] Lund, R., Hurd, H., Bloomfield, P. and Smith, R. (1995). Climatological time series with periodic correlation. J. Climate 8 2787–2809. [18] Tian, C. J. (1988). A limiting property of sample autocovariances of periodically correlated processes with application to period determination. J. Time Ser. Anal. 9 411–417. · Zbl 0668.62067 · doi:10.1111/j.1467-9892.1988.tb00480.x [19] Woodroofe, M. B. and Van Ness, J. W. (1967). The maximum deviation of sample spectral densities. Ann. Math. Statist. 38 1558–1569. · Zbl 0201.51801 · doi:10.1214/aoms/1177698710 [20] Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions 1 , 2 . Springer, Berlin., Mathematical Reviews (MathSciNet): · Zbl 0685.62078 [21] Zygmund, A. (1959). Trigonometric Series 1 , 2 , 2nd ed. Cambridge Univ. Press. · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.