Image security system using recursive cellular automata substitution. (English) Zbl 1113.68065

Summary: A novel image security system based on the replacement of the pixel values using recursive Cellular Automata (CA) substitution. This proposed image encryption method exhibits the properties of confusion and diffusion because of the characteristics of CA substitution are flexible. The salient features of the proposed image encryption method are its losslessness, symmetric private key encryption, very large number of secret keys, and key-dependent pixel value replacement. Simulation results obtained using some color and gray-level images clearly demonstrate the strong performance of the proposed image security system.


68Q80 Cellular automata (computational aspects)
68U10 Computing methodologies for image processing
68P25 Data encryption (aspects in computer science)
68T10 Pattern recognition, speech recognition


Full Text: DOI


[1] Bourbakis, N.G.; Alexopoulos, C., Picture data encryption using SCAN patterns, Pattern recognition, 25, 6, 567-581, (1992)
[2] C. Alexopoulos, N.G. Bourbakis, N. Ioannou, Image encryption method using a class of fractals, J. Electron. Imaging (4) (1995) 251-259.
[3] N.G. Bourbakis, Image data compression encryption using G-SCAN patterns, in: Proceedings of IEEE Conference on SMC, Orlando, Florida, USA, October 1997, pp. 1117-1120.
[4] Maniccam, S.S.; Bourbakis, N.G., Image and video encryption using SCAN patterns, Pattern recognition, 37, 4, 725-737, (2004) · Zbl 0984.68700
[5] Scharinger, J., Fast encryption of image data using chaotic Kolmogorov flows, J. electron. imaging, 7, 2, 318-325, (1998)
[6] F. Pichler, J. Scharinger, Finite dimensional generalized Baker dynamical system for cryptographic application, Lecture Notes in Computer Science, vol. 1030, Springer, Berlin, 1995, pp. 465-476.
[7] Li, S.J.; Chen, G.R.; Zheng, X., Chaos-based encryption for digital image and videos, (), (Chapter 4)
[8] Chung, K.L.; Chang, L.C., Large encrypting binary images with higher security, Pattern recognition lett., 19, 5, 461-468, (1998) · Zbl 0906.68192
[9] Li, X.B.; Knipe, J.; Cheng, H., Image compression and encryption using tree structures, Pattern recognition lett., 18, 11, 1253-1259, (1997)
[10] Chang, K.C.; Liu, J.L., A linear quadtree compression scheme for image encryption, Signal process. image commun., 10, 4, 279-290, (1997)
[11] Chuang, T.J.; Lin, J.C., New approach to image encryption, J. electron. imaging, 7, 2, 350-356, (1998)
[12] X.L. Wu, P.W. Moo, Joint image/video compression and encryption via high order conditional entropy coding of wavelet coefficients, in: Proceedings of IEEE International Conference on Multimedia Computing and Systems, 1999, pp. 908-912.
[13] Chuang, T.J.; Lin, J.C., A new multiresolutional approach to still image encryption, Pattern recognition image anal., 9, 3, 431-436, (1999)
[14] Kuo, C.J., Novel image encryption technique and its application in progressive transmission, J. electron. imaging, 2, 4, 345-351, (1993)
[15] Maniccam, S.S.; Bourbakis, N.G., Lossless image compression and encryption using SCAN, Pattern recognition, 34, 6, 1229-1245, (2001) · Zbl 0984.68700
[16] Karafyllidis, I.; Andreadis, I.; Tzionas, P.; Tsalides, Ph.; Thanailakis, A., A cellular automaton for the determination of the Mean velocity of moving objects and its VLSI implementation, Pattern recognition, 29, 4, 689-699, (1996)
[17] Nandi, S.; Kar, B.K.; Pal Chaudhuri, P., Theory and applications of cellular automata in cryptography, IEEE trans. comput., 43, 12, 1346-1357, (1994)
[18] Lafe, O., Data compression and encryption using cellular automata transform, Eng. appl. artif. intell., 10, 6, 581-591, (1998)
[19] Sasidhar, K.; Chattopadhyay, S.; Pal Chaudhuri, P., CAA decoder for cellular automata based error correcting code, IEEE trans. comput., 45, 9, 1003-1016, (1996) · Zbl 1048.68569
[20] Hortensius, P.; McLeod, R.; Pries, W.; Miller, M.; Card, H., Cellular automata-based pseudorandom number generators for built-in self-test, IEEE trans. comput. aided des. integrated circuits syst., 8, 8, 842-859, (1989)
[21] Schneier, B., Applied cryptography, (1996), Wiley New York · Zbl 0853.94001
[22] Brassard, G., Modern cryptology, (1988), Springer New York · Zbl 0661.94010
[23] S. Landau, Standing the test of time: the data encryption standard, in: Notices of American Mathematical Society, March 2000, pp. 341-349. · Zbl 0987.94500
[24] Blackburn, S.R.; Murphy, S.; Paterson, K.G., Comments on the theory and applications of cellular automata in cryptography, IEEE trans. comput., 2, 5, 637-638, (1997)
[25] Bourbakis, N.G.; Alexopoulos, C.; Klinger, A., A parallel implementation of the SCAN language, Int. J. comput. lang., 14, 4, 239-254, (1989)
[26] Wolfram, S., Statistical mechanics of cellular automata, Rev. mod. phys., 55, 3, 601-644, (1983) · Zbl 1174.82319
[27] R.J. Chen, J.L. Lai, VLSI implementation of the universal one-dimensional CAT/ICAT, in: Proceedings of the 2002 IEEE Asia-Pacific Conference on Circuit and Systems (APCCAS’02), vol. 2, Bali, Indonesia, October 28-31, 2002, pp. 279-282.
[28] R.J. Chen, J.L. Lai, Y.T. Lai, Design of the universal 2-D cellular automata bases generator and its VLSI implementation, in: Proceedings of the Seventh World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2003), vol. XII, Orlando, Florida, USA, July 27-31, 2003, pp. 165-168.
[29] R.J. Chen, J.L. Lai, C.S. Yang, W.C. Fan, W.J. Chen, C.C. Hung, L.Y. Hsu, The architecture of the re-configurable 2-D cellular automata bases generator, in: Proceedings of the 14th VLSI Design/CAD Symposium (VLSI Design/CAD 2003), Hualien, Taiwan, August 12-15, 2003, pp. 137-140.
[30] Tomassini, M.; Sipper, M.; Perrenoud, M., On the generation of high-quality random numbers by two-dimensional cellular automata, IEEE trans. comput., 49, 10, 1146-1151, (2000) · Zbl 1315.68187
[31] Shaannon, C.E., Communication theory of secrecy systems, Bell syst. tech. J., 28, 4, 656-715, (1949) · Zbl 1200.94005
[32] D. Barton, DCPcrypt cryptographic component library v2 beta 3, \(\langle\)http://www.cityinthesky.co.uk/cryptography.html⟩, 1999.
[33] S.R. Fluhrer, D.A. McGrew, Statistical analysis of the alleged RC4 keystream generator, Lecture Notes in Computer Science, vol. 2259, Springer, Berlin, 2001, pp. 1-24. · Zbl 0994.68639
[34] S. Lucks, Attacking triple encryption, Lecture Notes in Computer Science, vol. 1372, Springer, Berlin, 1988, pp. 239-253. · Zbl 1385.94056
[35] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D. Whiting, Improved cryptanalysis of Rijndael, Lecture Notes in Computer Science, vol. 1978, Springer, Berlin, 2000, pp. 213-230.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.