zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean field dynamics of Boson stars. (English) Zbl 1113.81032
Summary: We consider a quantum mechanical system of $N$ bosons with relativistic dispersion interacting through a mean field Coulomb potential (attractive or repulsive). We choose the initial wave function to describe a condensate where the $N$ bosons are all in the same one-particle state. Starting from the $N$-body Schrödinger equation, we prove that, in the limit $N \to \infty$, the time evolution of the one-particle density is governed by the relativistic nonlinear Hartree equation. This equation is used to describe the dynamics of boson stars (Chandrasekhar theory). The corresponding static problem was rigorously solved in [{\it E. Lieb} and {\it H.-T. Yau}, Commun. Math. Phys. 112, No. 1, 147--174 (1987)].

81Q05Closed and approximate solutions to quantum-mechanical equations
85A15Galactic and stellar structure
Full Text: DOI arXiv