×

zbMATH — the first resource for mathematics

Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. (English) Zbl 1113.82062
Summary: For the spatially homogeneous Boltzmann equation with hard potentials and Grad’s cutoff (e.g. hard spheres), we give quantitative estimates of exponential convergence to equilibrium, and we show that the rate of exponential decay is governed by the spectral gap for the linearized equation, on which we provide a lower bound. Our approach is based on establishing spectral gap-like estimates valid near the equilibrium, and then connecting the latter to the quantitative nonlinear theory. This leads us to an explicit study of the linearized Boltzmann collision operator in functional spaces larger than the usual linearization setting.

MSC:
82C40 Kinetic theory of gases in time-dependent statistical mechanics
47N55 Applications of operator theory in statistical physics (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arkeryd, L. On the Boltzmann equation. Arch. Rat. Mech. Anal. 45, 1–34 (1972) · Zbl 0245.76060
[2] Arkeryd, L.: Stability in L1 for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 103, 151–167 (1988) · Zbl 0654.76074
[3] Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Accepted for publication in Rev. Mat. Iberoamericana · Zbl 1092.76057
[4] Bobylev, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Mathematical physics reviews, Vol. 7, Soviet Sci. Rev. Sect. C Math. Phys. Rev., Chur: Harwood Acad. Publ., 1988, pp. 111–233 · Zbl 0850.76619
[5] Bobylev, A.V.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88, 1183–1214 (1997) · Zbl 0979.82049
[6] Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94, 603–618 (1999) · Zbl 0958.82040
[7] Bouchut, F., Desvillettes, L.: A proof of the smoothing property of the positive part of Boltzmann’s kernel. Rev. Math. Iberoam. 14, 47–61 (1998) · Zbl 0912.45014
[8] Bobylev, A.V., Gamba, I.M., Panferov, V.A.: Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004) · Zbl 1097.82021
[9] Brezis, H.: Analyse fonctionnelle. Théorie et applications. Paris: Masson, 1983
[10] Caflisch, R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commum. Math. Phys. 74, 71–95 (1980) · Zbl 0434.76065
[11] Carleman, T.: Sur le théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 369–424 (1932)
[12] Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67, 575–608 (1992) · Zbl 0899.76317
[13] Carlen, E.A., Carvalho, M.C.: Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys. 74, 743–782 (1994) · Zbl 0831.76074
[14] Carlen, E.A., Lu, X.: Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys. 112, 59–134 (2003) · Zbl 1079.82012
[15] Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199, 521–546 (1999) · Zbl 0927.76088
[16] Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences 67, New York: Springer-Verlag, 1988 · Zbl 0646.76001
[17] Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. New York: Springer-Verlag, 1994 · Zbl 0813.76001
[18] Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. 54(9), 125–156 (1975) · Zbl 0286.35062
[19] Golse, F., Poupaud, F.: Un résultat de compacité pour l’équation de Boltzmann avec potentiel mou. Application au problème de demi-espace. C. R. Acad. Sci. Paris Sér. I Math. 303, 585–586 (1986) · Zbl 0604.76067
[20] Grad, H.: Principles of the kinetic theory of gases. In: Flügge’s Handbuch des Physik, Vol. XII, Berlin-Heidelberg-New York: Springer-Verlag, 1958, pp. 205–294
[21] Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I, 1963, pp. 26–59
[22] Henry, D.: Geometric theory of semilinear parabolic equations. Berlin-New York: Springer-Verlag, 1981 · Zbl 0456.35001
[23] Kato, T.: Perturbation theory for linear operators. Berlin: Springer-Verlag, 1995 · Zbl 0836.47009
[24] Kuscer, I., Williams, M.M.R.: Phys. Fluids 10, 1922 (1967)
[25] Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications I,II,III. J. Math. Kyoto Univ. 34, 391–427, 429–461, 539–584 (1994) · Zbl 0831.35139
[26] Lu, X.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228, 409–435 (1998) · Zbl 0913.76081
[27] Mischler, S., Mouhot, C., Rodriguez Ricard, M.: Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem. To appear in J. Stat. Phys. · Zbl 1135.82325
[28] Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999) · Zbl 0946.35075
[29] Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173, 169–212 (2004) · Zbl 1063.76086
[30] Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commum. Math. Phys. 203, 667–706 (1999) · Zbl 0944.35066
[31] Ukai, S.: On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974) · Zbl 0312.35061
[32] Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 243, 455–490 (2003) · Zbl 1041.82018
[33] Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, Amsterdam: North-Holland, 2002 pp. 71–305 · Zbl 1170.82369
[34] Wang Chang, C.S., Uhlenbeck, G.E., de Boer, J.: Studies in Statistical Mechanics, Vol. V. Amsterdam: North-Holland, 1970
[35] Wennberg, B.: Stability and exponential convergence in Lp for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20(8), 935–964 (1993) · Zbl 0786.76074
[36] Wennberg, B.: Regularity in the Boltzmann equation and the Radon transform. Commun. Partial Diff. Eqs. 19, 2057–2074 (1994) · Zbl 0818.35128
[37] Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86, 1053–1066 (1997) · Zbl 0935.82035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.