zbMATH — the first resource for mathematics

Limit groups and groups acting freely on \(\mathbb{R}^n\)-trees. (English) Zbl 1114.20013
A ‘limit group’ is a limit of free groups in the space of marked groups. A theorem due to Kharlampovich-Myasnikov, Pfander and Sela states that a limit group is inductively obtained from free Abelian groups and surface groups by taking free products and amalgamations over \(\mathbb{Z}\). This implies that such a group is finitely presented, that it has a finite classifying space, that its Abelian subgroups are finitely generated and that it contains only finitely many conjugacy classes of non-cyclic maximal Abelian subgroups.
In the paper under review, the author gives another proof of the fact that a limit group is inductively obtained from free Abelian groups and surface groups by taking free products and amalgamations over \(\mathbb{Z}\). He first proves that a limit group acts freely on an \(\mathbb{R}^n\)-tree, and he then proves that a finitely generated group acting freely on an \(\mathbb{R}^n\)-tree can be obtained from free Abelian groups and from surface groups by a finite sequence of free products and amalgamation over cyclic groups.

20E08 Groups acting on trees
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20E26 Residual properties and generalizations; residually finite groups
20F05 Generators, relations, and presentations of groups
20E05 Free nonabelian groups
57M07 Topological methods in group theory
Full Text: DOI arXiv EuDML EMIS
[1] H Bass, Group actions on non-Archimedean trees, Math. Sci. Res. Inst. Publ. 19, Springer (1991) 69 · Zbl 0826.20026
[2] B Baumslag, Residually free groups, Proc. London Math. Soc. \((3)\) 17 (1967) 402 · Zbl 0166.01502
[3] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423 · Zbl 0104.24402
[4] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287 · Zbl 0837.20047
[5] N Bourbaki, Éléments de mathématique. Fasc XXX: Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles 1308, Hermann (1964) 207 · Zbl 0205.34302
[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) · Zbl 0584.20036
[7] C Champetier, V Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005) 1 · Zbl 1103.20026
[8] I M Chiswell, Nontrivial group actions on \(\Lambda\)-trees, Bull. London Math. Soc. 24 (1992) 277 · Zbl 0791.20022
[9] I M Chiswell, Harrison’s theorem for \(\Lambda\)-trees, Quart. J. Math. Oxford Ser. \((2)\) 45 (1994) 1 · Zbl 0807.20025
[10] I M Chiswell, Introduction to \(\Lambda\)-trees, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 466, Kluwer Acad. Publ. (1995) 255 · Zbl 0872.20027
[11] I Chiswell, Introduction to \(\Lambda\)-trees, World Scientific Publishing Co. (2001) · Zbl 1004.20014
[12] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933 · Zbl 1037.20042
[13] D Gaboriau, G Levitt, F Paulin, Pseudogroups of isometries of \(\mathbbR\) and Rips’ theorem on free actions on \(\mathbbR\)-trees, Israel J. Math. 87 (1994) 403 · Zbl 0824.57001
[14] A M Gaglione, D Spellman, Every “universally free” group is tree-free, World Sci. Publ., River Edge, NJ (1993) 149 · Zbl 0842.20023
[15] A M Gaglione, D Spellman, Does Lyndon’s length function imply the universal theory of free groups?, Contemp. Math. 169, Amer. Math. Soc. (1994) 277 · Zbl 0856.20003
[16] S Gross, Group actions on \(\Lambda\)-trees, PhD thesis, Hebrew University, Jerusalem (1998)
[17] V Guirardel, Rips theory for actions of finitely generated groups on \(\mathbbR\)-trees, in preparation · Zbl 1187.20020
[18] N Harrison, Real length functions in groups, Trans. Amer. Math. Soc. 174 (1972) 77 · Zbl 0255.20021
[19] S Jackson, L Q Zamboni, A note on a theorem of Chiswell, Proc. Amer. Math. Soc. 123 (1995) 2629 · Zbl 0841.20029
[20] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472 · Zbl 0904.20016
[21] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group II: Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517 · Zbl 0904.20017
[22] F V Kuhlmann, Value groups, residue fields, and bad places of rational function fields, Trans. Amer. Math. Soc. 356 (2004) 4559 · Zbl 1122.12005
[23] R C Lyndon, The equation \(a^2b^2=c^2\) in free groups, Michigan Math. J 6 (1959) 89 · Zbl 0084.02803
[24] F Paulin, Sur la théorie élémentaire des groupes libres (d’après Sela), Astérisque (2004) 363 · Zbl 1069.20030
[25] P H Pfander, Finitely generated subgroups of the free \(\mathbbZ[t]\)-group on two generators, London Math. Soc. Lecture Note Ser. 244, Cambridge Univ. Press (1997) 166 · Zbl 0890.20018
[26] V N Remeslennikov, \(\exists\)-free groups, Sibirsk. Mat. Zh. 30 (1989) 193 · Zbl 0724.20025
[27] V N Remeslennikov, \(\exists\)-free groups as groups with a length function, Ukraïn. Mat. Zh. 44 (1992) 813 · Zbl 0784.20015
[28] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527 · Zbl 0887.20017
[29] Z Sela, A list of research problems · Zbl 1241.20049
[30] Z Sela, Diophantine geometry over groups I: Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31 · Zbl 1018.20034
[31] M Urbański, L Zamboni, On free actions on \(\Lambda\)-trees, Math. Proc. Cambridge Philos. Soc. 113 (1993) 535 · Zbl 0791.20023
[32] O Zariski, P Samuel, Commutative algebra Vol II, Springer (1975) · Zbl 0121.27901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.