zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An exploration of combined dynamic derivatives on time scales and their applications. (English) Zbl 1114.26004
The purpose of the paper is to explore basic properties of the first and second order $\diamond_\alpha$ derivatives which are linear combinations of $\Delta$ and $\nabla$ dynamic derivatives on time scales. Definitions of the $\diamond_\alpha$ derivatives are introduced and basic properties of the combined dynamic derivatives, as well as differences between the combined and standard dynamic derivatives are investigated. Proper differentiation rules for the $\diamond_\alpha$ derivatives are established. The change of variable formulae for the corresponding integrals are shown. The authors also present a number of computational experiments with the combined derivatives and integrals.

MSC:
26A24Differentiation of functions of one real variable
WorldCat.org
Full Text: DOI
References:
[1] Ahlbrandt, C. D.; Bohner, M.; Ridenhour, J.: Hamiltonian systems on time scales. Appl. math. Comput. 250, 561-578 (2000) · Zbl 0966.39010
[2] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations, in: M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston and Berlin, 2003 (Chapter 3). · Zbl 1032.39007
[3] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications. (2001) · Zbl 0978.39001
[4] Bohner, M.; Peterson, A.: First and second order linear dynamic equations on time scales. J. difference eqns. Appl. 7, 767-792 (2001) · Zbl 0993.39010
[5] P.W. Eloe, S. Hilger, Q. Sheng, A qualitative analysis on nonconstant graininess of the adaptive grid via time scales, Rocky Mountain J. Math., in press. · Zbl 1135.65030
[6] Eloe, P. W.; Sheng, Q.: A continuation on cross symmetry of the solutions of two-point boundary value problems. J. dynamic sys. Appl. 12, 99-114 (2003) · Zbl 1056.34014
[7] Eloe, P. W.; Sheng, Q.: Approximating crossed symmetric solutions of nonlinear dynamic equations via quasilinearization. Nonlinear anal. 56, 253-272 (2004) · Zbl 1046.34036
[8] Eloe, P. W.; Sheng, Q.; Henderson, J.: Notes on crossed symmetry solution of the two-point boundary value problems on time scales. J. difference eqns. Appl. 9, 29-48 (2003) · Zbl 1038.34013
[9] Henderson, J.; Thompson, H. B.: Multiple symmetric positive solutions for a second order boundary value problem. Proc. amer. Math. soc. 128, 2373-2379 (2000) · Zbl 0949.34016
[10] S. Hilger, Ein Maßkettenkalkül mit Auwendung ouf Zentrumsmannigfaltigkeiten, Ph.D Thesis, Universität Würzburg, Germany, 1988.
[11] Hilger, S.: Analysis on measure chain --- a unified approach to continuous and discrete calculus. Results math. 18, 18-56 (1990) · Zbl 0722.39001
[12] Humphries, A. R.: Spurious solutions of numerical methods for initial value problems. IMA J. Numer. anal. 13, 263-290 (1993) · Zbl 0769.65041
[13] Iserles, A.; Peplow, A. T.; Stuart, A. M.: A unified approach to spurious solutions introduced by time discretisation. Part I: Basic theory. SIAM J. Numer. anal. 28, 1725-1751 (1991) · Zbl 0736.65050
[14] Iserles, A.; Stuart, A. M.: A unified approach to spurious solutions introduced by time discretisation. Part II: BDF-like method. IMA J. Numer. anal. 12, 487-502 (1992) · Zbl 0760.65071
[15] K. Messer, Second order self-adjoint equations with mixed derivatives, in: M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston and Berlin, 2002 (Chapter 4).
[16] Sheng, Q.; Cheng, H.: An adaptive grid method for degenerate semilinear quenching problems. Computers math. Appl. 39, 57-71 (2000) · Zbl 0962.65079
[17] Sheng, Q.; Khaliq, A.: Modified arc-length adaptive algorithms for degenerate reaction -- diffusion equations. Appl. math. Comput. 126, 279-297 (2002) · Zbl 1036.65072