zbMATH — the first resource for mathematics

An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series. (English) Zbl 1114.33007
Summary: We give a new proof of a theorem of Zudilin that equates a very-well-poised hypergeometric series and a particular multiple integral. This integral generalizes integrals of Vasilenko and Vasilyev which were proposed as tools in the study of the arithmetic behaviour of values of the Riemann zeta function at integers. Our proof is based on limiting cases of a basic hypergeometric identity of Andrews.

33C20 Generalized hypergeometric series, \({}_pF_q\)
11J72 Irrationality; linear independence over a field
Full Text: DOI
[1] Andrews, G.E.: Problems and prospects for basic hypergeometric functions. In: Askey R.A. (ed.), Theory and application of special functions. Math. Res. Center, Univ. Wisconsin, Publ. No. 35, pp. 191–224. Academic Press, New York (1975)
[2] Andrews, G.E., Askey R.A., Roy, R.: Special functions. The encyclopedia of mathematics and its applications, vol. 71. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001
[3] Apéry, R.: Irrationalité de \(\zeta\)(2) et \(\zeta\)(3). Astérisque 61, 11–13 (1979)
[4] Bailey, W.N.: Generalized hypergeometric series. Cambridge University Press, Cambridge (1935) · Zbl 0011.02303
[5] Ball, K., Rivoal, T.: Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Invent. Math. 146(1), 193–207 (2001) · Zbl 1058.11051 · doi:10.1007/s002220100168
[6] Beukers, F.: A note on the irrationality of \(\zeta\)(2) and \(\zeta\)(3). Bull. London Math. Soc. 11, 268–272 (1979) · Zbl 0421.10023 · doi:10.1112/blms/11.3.268
[7] Fischler, S.: Formes linéaires en polyzêtas et intégrales multiples. C.R. Acad. Sci. Paris, Série. I Math. 335, 1–4 (2002) · Zbl 1017.11048
[8] Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of Mathematics and its Applications 35. Cambridge University Press, Cambridge (1990) · Zbl 0695.33001
[9] Koornwinder, T.: Problem in the Open Problem Session during the Workshop on ”Special Functions, q-Series, and Related Topics,” Toronto, Canada (1995)
[10] Krattenthaler, C., Rivoal, T.: Hypergéométrie et fonction zêta de Riemann. Mem. Amer. Math. Soc., to appear. o http://arXiv.org/abs/math.NT/0311114 · Zbl 1113.11039
[11] Petkovšek, M., Wilf, H.S., Zeilberger, D.: A = B, A.K. Peters, Wellesley (1996)
[12] Rivoal, T.: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C.R. Acad. Sci. Paris, Série I Math. 331(4), 267–270 (2000), o http://arXiv.org/abs/math.NT/0008051
[13] Schlosser, M.: Abel-Rothe type generalizations of Jacobi’s triple product identity. In: Ismail, M.E.H. Koelink, E. (eds.), ”Theory and applications of special functions. A Volume Dedicated to Mizan Rahman,” Developments in Math., 13, 383–400. Kluwer Academic Publishers, Dordrecht (2005) · Zbl 1219.33020
[14] Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966) · Zbl 0135.28101
[15] Sorokin, V.N.: A transcendence measure for \(\pi\)2, Mat. Sbornik 187(12), 1819–1852 (1996) · Zbl 0876.11035 · doi:10.1070/SM1996v187n12ABEH000179
[16] Sorokin, V.N.: Apéry’s theorem, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3, 48–52 (1998); English translation in Moscow Univ. Math. Bull. 53.3, 48–52 (1998)
[17] Vasilenko, O.N.: Certain formulae for values of the Riemann zeta function at integral points. In: Number theory and its applications. Proceedings of the science-theoretical conference (Tashkent, 1990), p. 27 (in russian)
[18] Vasilyev, D.V.: Some formulas for the Riemann zeta function at integer points. Vestnik Moskov. Univ. Ser I Mat. Mekh. 1, 81–84 (1996); English translation in Moscow Univ. Math. Bull. 51.1, 41–43 (1996)
[19] Vasilyev, D.V.: On small linear forms for the values of the Riemann zeta-function at odd points, preprint, 1(558), Nat. Acad. Sci. Belarus, Institute Math., Minsk (2001)
[20] Zeilberger, D.: Identities in search of identity. Theoret. Comput. Sci. 117, 23–38 (1993) · Zbl 0783.05007 · doi:10.1016/0304-3975(93)90301-9
[21] Zhao, J.: Analytic continuation of multiple zeta functions. Proc. Amer. Math. Soc. 128, 1275–1283 (2000) · Zbl 0949.11042 · doi:10.1090/S0002-9939-99-05398-8
[22] Zlobin, S.: Integrals presented as linear forms in generalized polylogarithms. Mat. Zametki 71(5), 782–787 (2002) · Zbl 1049.11077
[23] Zudilin, W.: Well-poised hypergeometric service for diophantine problems of zeta values. J. Théor. Nombres Bordeaux 15(2), 593–626 (2003); see also: Multiple integral-representations of very-well-poised hypergeometric series, e-print available at o http://arXiv.org/abs/math.NT/0206177 · Zbl 1156.11326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.