×

Asymptotics of an optimal compliance-location problem. (English) Zbl 1114.49016

Summary: We consider the problem of placing a Dirichlet region made by \(n\) small balls of given radius in a given domain subject to a force \(f\) in order to minimize the compliance of the configuration. Then we let \(n\) tend to infinity and look for the \(\Gamma\)-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49Q10 Optimization of shapes other than minimal surfaces
74P05 Compliance or weight optimization in solid mechanics

References:

[1] G. Allaire , Shape optimization by the homogenization method . Springer-Verlag, New York ( 2002 ). MR 1859696 | Zbl 0990.35001 · Zbl 0990.35001
[2] M. Bendsoe and O. Sigmund , Topology Optimization . Theory, Methods, and Applications. Springer-Verlag, New York ( 2003 ). MR 2008524 | Zbl 1059.74001 · Zbl 1059.74001
[3] G. Bouchitté and G. Buttazzo , Integral representation of nonconvex functionals defined on measures . Ann. Inst. H. Poincaré Anal. Non Linéaire 9 ( 1992 ) 101 - 117 . Numdam | Zbl 0757.49012 · Zbl 0757.49012
[4] G. Bouchitté , C. Jimenez and M. Rajesh , Asymptotique d’un problème de positionnement optimal . C.R. Acad. Sci. Paris Ser. I 335 ( 2002 ) 1 - 6 . Zbl 1041.90025 · Zbl 1041.90025 · doi:10.1016/S1631-073X(02)02575-X
[5] D. Bucur and G. Buttazzo , Variational Methods in Shape Optimization Problems . Birkäuser, Boston, Progress in Nonlinear Differential Equations and their Applications 65 ( 2005 ). MR 2150214 | Zbl 1117.49001 · Zbl 1117.49001
[6] G. Buttazzo and G. Dal Maso , Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions . Bull. Amer. Math. Soc. 23 ( 1990 ) 531 - 535 . Article | Zbl 0718.49017 · Zbl 0718.49017 · doi:10.1090/S0273-0979-1990-15971-3
[7] G. Buttazzo and G. Dal Maso , Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions . Appl. Math. Optim. 23 ( 1991 ) 17 - 49 . Zbl 0762.49017 · Zbl 0762.49017 · doi:10.1007/BF01442391
[8] G. Buttazzo and G. Dal Maso , An existence result for a class of shape optimization problems . Arch. Rational Mech. Anal. 122 ( 1993 ) 183 - 195 . Zbl 0811.49028 · Zbl 0811.49028 · doi:10.1007/BF00378167
[9] G. Buttazzo , G. Dal Maso , A. Garroni and A. Malusa , On the relaxed formulation of Some Shape Optimization Problems . Adv. Math. Sci. Appl. 7 ( 1997 ) 1 - 24 . Zbl 0971.49024 · Zbl 0971.49024
[10] D. Cioranescu and F. Murat , Un terme étrange venu d’ailleurs . Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. II ( 1982 ), 98 - 138 and Vol. III ( 1982 ) 154 - 178 . Zbl 0496.35030 · Zbl 0496.35030
[11] G. Dal Maso , An Introduction to \(\Gamma -\)convergence . Birkhauser, Basel ( 1992 ). MR 1201152 | Zbl 0816.49001 · Zbl 0816.49001
[12] L. Fejes Tóth , Lagerungen in der Ebene auf der Kugel und im Raum , Die Grundlehren der Math. Wiss., Vol. 65, Springer-Verlag, Berlin ( 1953 ). MR 57566 | Zbl 0052.18401 · Zbl 0052.18401
[13] A. Henrot and M. Pierre , Variation et Optimisation de Forme . Une analyse géométrique. Springer-Verlag, Berlin, Mathématiques et Applications 48 ( 2005 ). Zbl 1098.49001 · Zbl 1098.49001 · doi:10.1007/3-540-37689-5
[14] F. Morgan and R. Bolton , Hexagonal Economic Regions Solve the Location Problem . Amer. Math. Monthly 109 ( 2002 ) 165 - 172 . Zbl 1026.90059 · Zbl 1026.90059 · doi:10.2307/2695328
[15] S. Mosconi and P. Tilli , \(\Gamma -\)Convergence for the Irrigation Problem , 2003. J. Conv. Anal. 12 ( 2005 ) 145 - 158 . Zbl 1076.49024 · Zbl 1076.49024
[16] J. Sokolowski and J.P. Zolesio , Introduction to Shape Optimization . Shape sensitivity analysis. Springer-Verlag, Berlin ( 1992 ). MR 1215733 | Zbl 0761.73003 · Zbl 0761.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.