Hu, Rong; Fang, Ya-Ping Set-valued increasing-along-rays maps and well-posed set-valued star-shaped optimization. (English) Zbl 1114.49026 J. Math. Anal. Appl. 331, No. 2, 1371-1383 (2007). The authors introduce a class of set-valued increasing-along-rays maps and present some properties of set-valued increasing-along-rays maps. It is shown that the increasing-along-rays property of a set-valued map is close related to the corresponding set-valued star-shaped optimization. By means of increasing-along-rays property, the stability and well-posedness of set-valued star-shaped optimization is investigated. Reviewer: Jagdish Prakash (Mumbai) Cited in 7 Documents MSC: 49K40 Sensitivity, stability, well-posedness 49J53 Set-valued and variational analysis Keywords:set valued maps PDF BibTeX XML Cite \textit{R. Hu} and \textit{Y.-P. Fang}, J. Math. Anal. Appl. 331, No. 2, 1371--1383 (2007; Zbl 1114.49026) Full Text: DOI References: [1] Bednarczuk, E., Well posedness of vector optimization problem, (Jahn, J.; Krabs, W., Recent Advances and Historical Development of Vector Optimization Problems. Recent Advances and Historical Development of Vector Optimization Problems, Lecture Notes in Econom. and Math. Systems, vol. 294 (1987), Springer-Verlag: Springer-Verlag Berlin), 51-61 [2] Bednarczuk, E., An approach to well-posedness in vector optimization: Consequences to stability, Parametric optimization, Control Cybernet., 23, 1-2, 107-122 (1994) · Zbl 0811.90092 [3] Bianchi, M.; Hadjisavvas, N.; Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92, 3, 527-542 (1997) · Zbl 0878.49007 [4] Crespi, G. P.; Ginchev, I.; Rocca, M., Minty variational inequalities, increase-along-rays property and optimization, J. Optim. Theory Appl., 123, 3, 479-496 (2004) · Zbl 1059.49010 [5] Crespi, G. P.; Ginchev, I.; Rocca, M., Existence of solutions and star-shapedness in Minty variational inequalities, J. Global Optim., 32, 4, 485-494 (2005) · Zbl 1097.49007 [6] Dentcheva, D.; Helbig, S., On variational principles, level sets, well-posedness, and &z.epsi;-solutions in vector optimization, J. Optim. Theory Appl., 89, 2, 325-349 (1996) · Zbl 0853.90101 [7] Dontchev, A. L.; Zolezzi, T., Well-Posed Optimization Problems, Lecture Notes in Math., vol. 1543 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.49001 [9] Göpfert, A.; Tammer, C.; Riahi, H.; Zǎlinescu, C., Variational Methods in Partially Ordered Spaces (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1140.90007 [10] Huang, X. X., Extended well-posedness properties of vector optimization problems, J. Optim. Theory Appl., 106, 1, 165-182 (2000) · Zbl 1028.90067 [11] Huang, X. X., Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle, J. Optim. Theory Appl., 108, 3, 671-684 (2001) · Zbl 1017.90098 [12] Loridan, P., Well-posedness in vector optimization, (Lucchetti, R.; Revalski, J., Recent Developments in Variational Well-Posedness Problems. Recent Developments in Variational Well-Posedness Problems, Math. Appl., vol. 331 (1995), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 171-192 · Zbl 0848.49017 [13] Luc, D. T., Theory of Vector Optimization, Lecture Notes in Econom. and Math. Systems, vol. 319 (1989), Springer-Verlag: Springer-Verlag Berlin [14] Lucchetti, R., Well posedness, towards vector optimization, (Jahn, J.; Krabs, W., Recent Advances and Historical Development of Vector Optimization Problems. Recent Advances and Historical Development of Vector Optimization Problems, Lecture Notes in Econom. and Math. Systems, vol. 294 (1987), Springer-Verlag: Springer-Verlag Berlin), 194-207 [15] Miglierina, E.; Molho, E., Well-posedness and convexity in vector optimization, Math. Methods Oper. Res., 58, 3, 375-385 (2003) · Zbl 1083.90036 [16] Miglierina, E.; Molho, E.; Rocca, M., Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126, 2, 391-409 (2005) · Zbl 1129.90346 [17] Miglierina, E.; Molho, E., Convergence of minimal sets in convex vector optimization, SIAM J. Optim., 15, 2, 513-526 (2005) · Zbl 1114.90116 [18] Rubinov, A. M., Abstract Convexity and Global Optimization (2000), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht · Zbl 0963.49014 [19] Rubinov, A. M.; Andramonov, M. Y., Minimizing increasing star-shaped functions based on abstract convexity, J. Global Optim., 15, 1, 19-39 (1999) · Zbl 0954.90034 [20] Shveidel, A., Separability of star-shaped sets and its application to an optimization problem, Optimization, 40, 3, 207-227 (1997) · Zbl 0884.52009 [21] Sonntag, Y.; Zălinescu, C., Set convergences: A survey and a classification. Set convergence in nonlinear analysis and optimization, Set-Valued Anal., 2, 1-2, 339-356 (1994) · Zbl 0810.54012 [22] Tanaka, T., Generalized semicontinuity and existence theorems for cone saddle points, Appl. Math. Optim., 36, 3, 313-322 (1997) · Zbl 0894.90132 [23] Tykhonov, A. N., On the stability of the functional optimization problem, USSR J. Comput. Math. Math. Physics, 6, 631-634 (1966) [24] Zaffaroni, A., Is every radiant function the sum of quasiconvex functions?, Math. Methods Oper. Res., 59, 2, 221-233 (2004) · Zbl 1056.49020 [25] Zolezzi, T., Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal., 25, 5, 437-453 (1995) · Zbl 0841.49005 [26] Zolezzi, T., Extended well-posedness of optimization problems, J. Optim. Theory Appl., 91, 1, 257-266 (1996) · Zbl 0873.90094 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.