×

Semigeodesics and the minimal time function. (English) Zbl 1114.49028

A time-optimal control problem is considered on solutions of a differential inclusion \(\dot{x}\in F(x)\) with a terminal condition \(x(T)\in S\). Here \(F(x)\) is a convex-compact-valued locally Lipschitz-continuous multifunction satisfying a linear growth condition, and \(S\) is a nonempty compact set in \({\mathbb R}^n\). A solution to the differential inclusion, \(x(t)\), \(t\geq0\), is called semigeodesic if every its part is time-optimal. A trajectory is called geodesic, if the same holds true for \(t\in(-\infty,\infty)\).
The main focus is finding local-controllability conditions under which the optimal time as a function of initial point is a proximal solution to a Hamilton-Jacobi equation with the Hamiltonian expressed through the support function of the right-hand side \(F(x)\). The results generalize the conclusions of previous work of the author and F. H. Clarke [J. Convex Anal. 11, No. 2, 413–436 (2004; Zbl 1072.49018)]. In that earlier work a similar problem has been considered for a single-point terminal condition. In fact, majority of proofs are given in form of references to the respective proofs of the earlier work. Somewhat artificial examples illustrate the role of the assumptions in the theorems.

MSC:

49L20 Dynamic programming in optimal control and differential games
49J24 Optimal control problems with differential inclusions (existence) (MSC2000)
34A60 Ordinary differential inclusions

Citations:

Zbl 1072.49018

References:

[1] O. Alvarez , S. Koike and I. Nakayama , Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem . SIAM J. Control Optim. 38 ( 2000 ) 470 - 481 . Zbl 0949.49020 · Zbl 0949.49020 · doi:10.1137/S0363012997317190
[2] J.P. Aubin and A. Cellina , Differential inclusions . Springer-Verlag, New York ( 1984 ). MR 755330 | Zbl 0538.34007 · Zbl 0538.34007
[3] M. Bardi and I. Capuzzo-Dolcetta , Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations . With appendices by Maurizio Falcone and Pierpaolo Soravia. Birkhäuser Boston, Inc., Boston, MA ( 1997 ). MR 1484411 | Zbl 0890.49011 · Zbl 0890.49011
[4] E.N. Barron and R. Jensen , Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians . Commun. Partial Differ. Equations 15 ( 1990 ) 1713 - 1742 . Zbl 0732.35014 · Zbl 0732.35014 · doi:10.1080/03605309908820745
[5] P. Cannarsa and C. Sinestrari , Convexity properties of the minimum time function . Calc. Var. 3 ( 1995 ) 273 - 298 . Zbl 0836.49013 · Zbl 0836.49013 · doi:10.1007/BF01189393
[6] P. Cannarsa and C. Sinestrari , Semiconcave functions , Hamilton-Jacobi equations and optimal control problems. Birkhäuser Boston ( 2004 ). MR 2041617 | Zbl 1095.49003 · Zbl 1095.49003
[7] P. Cardaliaguet , M. Quincampoix and P. Saint-Pierre , Optimal times for constrained nonlinear control problems without local controllability . Appl. Math. Optim. 36 ( 1997 ) 21 - 42 . Zbl 0884.49002 · Zbl 0884.49002 · doi:10.1007/BF02683336
[8] F.H. Clarke and Yu. Ledyaev , Mean value inequalities in Hilbert space . Trans. Amer. Math. Soc. 344 ( 1994 ) 307 - 324 . Zbl 0803.49018 · Zbl 0803.49018 · doi:10.2307/2154718
[9] F.H. Clarke , Yu. Ledyaev , R. Stern and P. Wolenski , Qualitative properties of trajectories of control systems: A survey . J. Dynam. Control Syst. 1 ( 1995 ) 1 - 48 . Zbl 0951.49003 · Zbl 0951.49003 · doi:10.1007/BF02254655
[10] F.H. Clarke , Yu. Ledyaev , R. Stern and P. Wolenski , Nonsmooth Analysis and Control Theory . Graduate Texts Math. 178 ( 1998 ). Springer-Verlag, New York. MR 1488695 | Zbl 1047.49500 · Zbl 1047.49500
[11] F.H. Clarke and C. Nour , The Hamilton-Jacobi equation of minimal time control . J. Convex Anal. 11 ( 2004 ) 413 - 436 . Zbl 1072.49018 · Zbl 1072.49018
[12] M.G. Crandall , H. Ishi and P.L. Lions , User’s guide to the viscosity solutions of second order partial differential equations . Bull. Amer. Math. Soc. 27 ( 1992 ) 1 - 67 . arXiv | Zbl 0755.35015 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[13] M.G. Crandall and P.L. Lions , Viscosity solutions of Hamilton-Jacobi equations . Trans. Amer. Math. Soc. 277 ( 1983 ) 1 - 42 . Zbl 0599.35024 · Zbl 0599.35024 · doi:10.2307/1999343
[14] W.H. Fleming and H.M. Soner , Controlled Markov Processes and Viscosity Solutions . Springer-Verlag, New York ( 1993 ). MR 1199811 | Zbl 0773.60070 · Zbl 0773.60070
[15] H. Frankowska , Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations . SIAM J. Control Optim. 31 ( 1993 ) 257 - 272 . Zbl 0796.49024 · Zbl 0796.49024 · doi:10.1137/0331016
[16] C. Nour , The Hamilton-Jacobi equation in optimal control: duality and geodesics . Ph.D. Thesis, Université Claude Bernard Lyon I ( 2003 ).
[17] C. Nour , The bilateral minimal time function . J. Convex Anal., to appear. MR 2211804 | Zbl 1112.49024 · Zbl 1112.49024
[18] P. Soravia , Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians . Comm. Partial Differ. Equ. 18 ( 1993 ) 1493 - 1514 . Zbl 0788.49028 · Zbl 0788.49028 · doi:10.1080/03605309308820983
[19] H.J. Sussmann , A general theorem on local controllability . SIAM J. Control Optim. 25 ( 1987 ) 158 - 133 . Zbl 0629.93012 · Zbl 0629.93012 · doi:10.1137/0325011
[20] V.M. Veliov , Lipschitz continuity of the value function in optimal control . J. Optim. Theory Appl. 94 ( 1997 ) 335 - 363 . Zbl 0901.49022 · Zbl 0901.49022 · doi:10.1023/A:1022683628650
[21] R.B. Vinter , Optimal control . Birkhäuser Boston, Inc., Boston, MA ( 2000 ). MR 1756410 | Zbl 0952.49001 · Zbl 0952.49001
[22] P. Wolenski and Y. Zhuang , Proximal analysis and the minimal time function . SIAM J. Control Optim. 36 ( 1998 ) 1048 - 1072 . Zbl 0930.49016 · Zbl 0930.49016 · doi:10.1137/S0363012996299338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.