Day, Martin V. Boundary-influenced robust controls: two network examples. (English) Zbl 1114.49029 ESAIM, Control Optim. Calc. Var. 12, 662-698 (2006). Summary: We consider the differential game associated with robust control of a system in a compact state domain, using Skorokhod dynamics on the boundary. A specific class of problems motivated by queueing network control is considered. A constructive approach to the Hamilton-Jacobi-Isaacs equation is developed which is based on an appropriate family of extremals, including boundary extremals for which the Skorokhod dynamics are active. A number of technical lemmas and a structured verification theorem are formulated to support the use of this technique in simple examples. Two examples are considered which illustrate the application of the results. This extends previous work by Ball, Day and others on such problems, but with a new emphasis on problems for which the Skorokhod dynamics play a critical role. Connections with the viscosity-sense oblique derivative conditions of Lions and others are noted. Cited in 4 Documents MSC: 49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games 49N70 Differential games and control 90C39 Dynamic programming 91A23 Differential games (aspects of game theory) 93C15 Control/observation systems governed by ordinary differential equations Keywords:robust control; differential game; queueing network × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] R. Atar and P. Dupuis , A differential game with constrained dynamics and viscosity solutions of a related HJB equation . Nonlinear Anal. 51 ( 2002 ) 1105 - 1130 . Zbl 1025.49020 · Zbl 1025.49020 · doi:10.1016/S0362-546X(01)00134-1 [2] R. Atar , P. Dupuis and A. Shwartz , An escape criterion for queueing networks: Asymptotic risk-sensitive control via differential games . Math. Op. Res. 28 ( 2003 ) 801 - 835 . Zbl 1082.60520 · Zbl 1082.60520 · doi:10.1287/moor.28.4.801.20514 [3] R. Atar , P. Dupuis and A. Schwartz , Explicit solutions for a network control problem in the large deviation regime , Queueing Systems 46 ( 2004 ) 159 - 176 . Zbl 1044.60018 · Zbl 1044.60018 · doi:10.1023/B:QUES.0000021147.09071.e3 [4] F. Avram , Optimal control of fluid limits of queueing networks and stochasticity corrections , in Mathematics of Stochastic Manufacturing Systems, G. Yin and Q. Zhang Eds., AMS, Lect. Appl. Math. 33 ( 1996 ). MR 1458896 | Zbl 0894.60095 · Zbl 0894.60095 [5] F. Avram , D. Bertsimas , M. Ricard , Fluid models of sequencing problems in open queueing networks; and optimal control approach , in Stochastic Networks, F.P. Kelly and R.J. Williams Eds., Springer-Verlag, NY ( 1995 ). MR 1381013 | Zbl 0837.60083 · Zbl 0837.60083 [6] J.A. Ball , M.V. Day and P. Kachroo , Robust feedback control of a single server queueing system . Math. Control, Signals, Syst. 12 ( 1999 ) 307 - 345 . Zbl 0940.93028 · Zbl 0940.93028 · doi:10.1007/PL00009855 [7] J.A. Ball , M.V. Day , P. Kachroo and T. Yu , Robust \(L_2\)-Gain for nonlinear systems with projection dynamics and input constraints: an example from traffic control . Automatica 35 ( 1999 ) 429 - 444 . Zbl 0946.93015 · Zbl 0946.93015 · doi:10.1016/S0005-1098(98)00164-2 [8] M. Bardi and I. Cappuzzo-Dolcetta , Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations . Birkhäuser, Boston ( 1997 ). MR 1484411 | Zbl 0890.49011 · Zbl 0890.49011 [9] T. Basar and P. Bernhard , \(\mathrm{H}^\infty \)-Optimal Control and Related Minimax Design Problems - A Dynamic game approach . Birkhäuser, Boston ( 1991 ). Zbl 0751.93020 · Zbl 0751.93020 [10] A. Budhiraja and P. Dupuis , Simple necessary and sufficient conditions for the stability of constrained processes . SIAM J. Appl. Math. 59 ( 1999 ) 1686 - 1700 . Zbl 0934.93068 · Zbl 0934.93068 · doi:10.1137/S0036139997330222 [11] H. Chen and A. Mandelbaum , Discrete flow networks: bottleneck analysis and fluid approximations . Math. Oper. Res. 16 ( 1991 ) 408 - 446 . Zbl 0735.60095 · Zbl 0735.60095 · doi:10.1287/moor.16.2.408 [12] H. Chen and D.D. Yao , Fundamentals of Queueing Networks: Performance , Asymptotics and Optimization. Springer-Verlag, N.Y. ( 2001 ). MR 1835969 | Zbl 0992.60003 · Zbl 0992.60003 [13] J.G. Dai , On the positive Harris recurrence for multiclass queueing networks: a unified approach via fluid models . Ann. Appl. Prob. 5 ( 1995 ) 49 - 77 . Article | Zbl 0822.60083 · Zbl 0822.60083 · doi:10.1214/aoap/1177004828 [14] M.V. Day , On the velocity projection for polyhedral Skorokhod problems . Appl. Math. E-Notes 5 ( 2005 ) 52 - 59 . Zbl 1073.90050 · Zbl 1073.90050 [15] M.V. Day , J. Hall , J. Menendez , D. Potter and I. Rothstein , Robust optimal service analysis of single-server re-entrant queues . Comput. Optim. Appl. 22 ( 2002 ), 261 - 302 . Zbl pre01783534 · Zbl 1161.90364 · doi:10.1023/A:1015493708945 [16] P. Dupuis and H. Ishii , On Lipschitz continuity of the solution mapping of the Skorokhod problem, with applications . Stochastics and Stochastics Reports 35 ( 1991 ) 31 - 62 . Zbl 0721.60062 · Zbl 0721.60062 [17] P. Dupuis and A. Nagurney , Dynamical systems and variational inequalities . Annals Op. Res. 44 ( 1993 ) 9 - 42 . Zbl 0785.93044 · Zbl 0785.93044 · doi:10.1007/BF02073589 [18] P. Dupuis and K. Ramanan , Convex duality and the Skorokhod problem, I and II. Prob. Theor. Rel. Fields 115 ( 1999 ) 153 - 195 , 197 - 236 . Zbl 0944.60062 · Zbl 0944.60062 · doi:10.1007/s004400050270 [19] D. Eng , J. Humphrey and S. Meyn , Fluid network models: linear programs for control and performance bounds in Proc . of the 13th World Congress of International Federation of Automatic Control B ( 1996 ) 19 - 24 . [20] A.F. Filippov , Differential Equations with Discontinuous Right Hand Sides , Kluwer Academic Publishers ( 1988 ). Zbl 0664.34001 · Zbl 0664.34001 [21] W.H. Fleming and M.R. James , The risk-sensitive index and the \(H_2\) and \(H_{\infty }\) morms for nonlinear systems . Math. Control Signals Syst. 8 ( 1995 ) 199 - 221 . Zbl 0854.93045 · Zbl 0854.93045 · doi:10.1007/BF01211859 [22] W.H. Fleming and W.M. McEneaney , Risk-sensitive control on an infinite time horizon . SAIM J. Control Opt. 33 ( 1995 ) 1881 - 1915 . Zbl 0949.93079 · Zbl 0949.93079 · doi:10.1137/S0363012993258720 [23] J.M. Harrison , Brownian models of queueing networks with heterogeneous customer populations , in Proc. of IMA Workshop on Stochastic Differential Systems. Springer-Verlag ( 1988 ). MR 934722 | Zbl 0658.60123 · Zbl 0658.60123 [24] P. Hartman , Ordinary Differential Equations (second edition). Birkhauser, Boston ( 1982 ). MR 658490 · Zbl 0476.34002 [25] R. Isaacs , Differential Games . Wiley, New York ( 1965 ). MR 210469 | Zbl 0125.38001 · Zbl 0125.38001 [26] P.L. Lions , Neumann type boundary conditions for Hamilton-Jacobi equations , Duke Math. J. 52 ( 1985 ) 793 - 820 . Article | Zbl 0599.35025 · Zbl 0599.35025 · doi:10.1215/S0012-7094-85-05242-1 [27] X. Luo and D. Bertsimas , A new algorithm for state-constrained separated continuous linear programs . SIAM J. Control Opt. 37 ( 1998 ) 177 - 210 . Zbl 0921.49023 · Zbl 0921.49023 · doi:10.1137/S0363012995292664 [28] S. Meyn , Stability and optimizations of queueing networks and their fluid models , in Mathematics of Stochastic Manufacturing Systems, G. Yin and Q. Zhang Eds., Lect. Appl. Math. 33, AMS ( 1996 ). MR 1458906 | Zbl 0888.90074 · Zbl 0888.90074 [29] S. Meyn , Transience of multiclass queueing networks via fluid limit models . Ann. Appl. Prob. 5 ( 1995 ) 946 - 957 . Article | Zbl 0865.60079 · Zbl 0865.60079 · doi:10.1214/aoap/1177004601 [30] S. Meyn , Sequencing and routing in multiclass queueing networks, part 1: feedback regulation . SIAM J. Control Optim. 40 ( 2001 ) 741 - 776 . Zbl 1060.90043 · Zbl 1060.90043 · doi:10.1137/S0363012999362724 [31] M.I. Reiman , Open queueing networks in heavy traffic . Math. Oper. Res. 9 ( 1984 ) 441 - 458 . Zbl 0549.90043 · Zbl 0549.90043 · doi:10.1287/moor.9.3.441 [32] R.T. Rockafellar , Convex Analysis . Princeton Univ. Press, Princeton ( 1970 ). MR 266020 | Zbl 0193.18401 · Zbl 0193.18401 [33] P. Soravia , \(H_{\infty }\) control of nonlinear systems: differential games and viscosity solutions . SIAM J. Control Optim. 34 ( 1996 ) 071 - 1097 . Zbl 0926.93019 · Zbl 0926.93019 · doi:10.1137/S0363012994266413 [34] G. Weiss , On optimal draining of re-entrant fluid lines , in Stochastic Networks, F.P. Kelly and R.J. Williams, Eds. Springer-Verlag, NY ( 1995 ). MR 1381006 | Zbl 0823.60084 · Zbl 0823.60084 [35] G. Weiss , A simplex based algorithm to solve separated continuous linear programs , to appear (preprint available at http://stat.haifa.ac.il/ gweiss/). MR 2403756 | Zbl pre05294511 · Zbl 1165.90011 [36] P. Whittle , Risk-sensitive Optimal Control . J. Wiley, Chichester ( 1990 ). MR 1093001 | Zbl 0718.93068 · Zbl 0718.93068 [37] R.J. Williams , Semimartingale reflecting Brownian motions in the orthant , Stochastic Networks, Springer, New York IMA Vol. Math. Appl. 71 ( 1995 ) 125 - 137 . Zbl 0827.60031 · Zbl 0827.60031 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.