Zuo, Yijun; He, Xuming On the limiting distributions of multivariate depth-based rank sum statistics and related tests. (English) Zbl 1114.62020 Ann. Stat. 34, No. 6, 2879-2896 (2006). Summary: A depth-based rank sum statistic for multivariate data introduced by R. Y. Liu and K. Singh [J. Am. Stat. Assoc. 88, No. 421, 252–260 (1993; Zbl 0772.62031)] as an extension of the Wilcoxon rank sum statistic for univariate data has been used in multivariate rank tests in quality control and in experimental studies. Those applications, however, are based on a conjectured limiting distribution, provided by Liu and Singh (op. cit.).The present paper proves the conjecture under general regularity conditions and, therefore, validates various applications of the rank sum statistic in the literature. The paper also shows that the corresponding rank sum tests can be more powerful than Hotelling’s \(T^2\) test and some commonly used multivariate rank tests in detecting location-scale changes in multivariate distributions. Cited in 23 Documents MSC: 62E20 Asymptotic distribution theory in statistics 62G10 Nonparametric hypothesis testing 62H15 Hypothesis testing in multivariate analysis 62H10 Multivariate distribution of statistics 62G20 Asymptotic properties of nonparametric inference Citations:Zbl 0772.62031 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Alexander, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12 1041–1067. · Zbl 0549.60024 · doi:10.1214/aop/1176993141 [2] Brown, B. M. and Hettmansperger, T. P. (1987). Affine invariant rank methods in the bivariate location model. J. Roy. Statist. Soc. Ser. B 49 301–310. JSTOR: · Zbl 0653.62039 [3] Choi, K. and Marden, J. (1997). An approach to multivariate rank tests in multivariate analysis of variance. J. Amer. Statist. Assoc. 92 1581–1590. JSTOR: · Zbl 0912.62065 · doi:10.2307/2965429 [4] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Dept. Statistics, Harvard Univ. [5] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803–1827. · Zbl 0776.62031 · doi:10.1214/aos/1176348890 [6] Dudley, R. M. (1999). Uniform Central Limit Theorems . Cambridge Univ. Press. · Zbl 0951.60033 · doi:10.1017/CBO9780511665622 [7] Hettmansperger, T. P., Möttönen, J. and Oja, H. (1998). Affine invariant multivariate rank tests for several samples. Statist. Sinica 8 785–800. · Zbl 0905.62062 [8] Huber, P. J. (1981). Robust Statistics . Wiley, New York. · Zbl 0536.62025 [9] Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405–414. · Zbl 0701.62063 · doi:10.1214/aos/1176347507 [10] Liu, R. Y. (1992). Data depth and multivariate rank tests. In \(L_1\)-Statistical Analysis and Related Methods (Y. Dodge, ed.) 279–294. North-Holland, Amsterdam. · Zbl 0772.62031 · doi:10.2307/2290720 [11] Liu, R. Y. (1995). Control charts for multivariate processes. J. Amer. Statist. Assoc. 90 1380–1387. JSTOR: · Zbl 0868.62075 · doi:10.2307/2291529 [12] Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. J. Amer. Statist. Assoc. 88 252–260. JSTOR: · Zbl 0772.62031 · doi:10.2307/2290720 [13] Massart, P. (1983). Vitesses de convergence dans le théorème central limite pour des processus empiriques. C. R. Acad. Sci. Paris Sér. I Math. 296 937–940. · Zbl 0524.60025 [14] Massart, P. (1986). Rates of convergence in the central limit theorem for empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 22 381–423. · Zbl 0615.60032 [15] Massé, J.-C. (2004). Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean. Bernoulli 10 397–419. · Zbl 1053.62021 · doi:10.3150/bj/1089206404 [16] Möttönen, J., Hettmansperger, T. P., Oja, H. and Tienari, J. (1998). On the efficiency of affine invariant multivariate rank tests. J. Multivariate Anal. 66 118–132. · Zbl 1127.62361 · doi:10.1006/jmva.1998.1740 [17] Pollard, D. (1990). Empirical Processes: Theory and Applications . IMS, Hayward, CA. · Zbl 0741.60001 [18] Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis . Wiley, New York. · Zbl 0237.62033 [19] Randles, R. H. and Peters, D. (1990). Multivariate rank tests for the two-sample location problem. Comm. Statist. Theory Methods 19 4225–4238. · doi:10.1080/03610929008830439 [20] Rousson, V. (2002). On distribution-free tests for the multivariate two-sample location-scale model. J. Multivariate Anal. 80 43–57. · Zbl 1010.62035 · doi:10.1006/jmva.2000.1981 [21] Seber, G. A. F. (1977). Linear Regression Analysis . Wiley, New York. · Zbl 0354.62055 [22] Stahel, W. A. (1981). Breakdown of covariance estimators. Research Report 31, Fachgruppe für Statistik, ETH, Zürich. [23] Topchii, A., Tyurin, Y. and Oja, H. (2003). Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic. J. Nonparametr. Statist. 15 403–419. · Zbl 1054.62071 · doi:10.1080/1048525031000120242 [24] Tukey, J. W. (1975). Mathematics and the picturing of data. In Proc. International Congress of Mathematicians 2 523–531. Canadian Math. Congress, Montreal. · Zbl 0347.62002 [25] Zuo, Y. (2003). Projection-based depth functions and associated medians. Ann. Statist. 31 1460–1490. · Zbl 1046.62056 · doi:10.1214/aos/1065705115 [26] Zuo, Y. (2004). Projection-based affine equivariant multivariate location estimators with the best possible finite sample breakdown point. Statist. Sinica 14 1199–1208. · Zbl 1060.62063 [27] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist. 28 461–482. · Zbl 1106.62334 · doi:10.1214/aos/1016218226 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.