Chen, Aiyou; Bickel, Peter J. Efficient independent component analysis. (English) Zbl 1114.62033 Ann. Stat. 34, No. 6, 2825-2855 (2006). Summary: Independent component analysis (ICA) has been widely used for blind source separation in many fields, such as brain imaging analysis, signal processing and telecommunication. Many statistical techniques based on \(M\)-estimates have been proposed for estimating the mixing matrix.Recently, several nonparametric methods have been developed, but in-depth analysis of asymptotic efficiency has not been available. We analyze ICA using semiparametric theories and propose a straightforward estimate based on the efficient score function by using B-spline approximations. The estimate is asymptotically efficient under moderate conditions and exhibits better performance than standard ICA methods in a variety of simulations. Cited in 1 ReviewCited in 29 Documents MSC: 62G05 Nonparametric estimation 62H12 Estimation in multivariate analysis 62G20 Asymptotic properties of nonparametric inference 65C60 Computational problems in statistics (MSC2010) Keywords:semiparametric models; efficient score functions; asymptotically efficient; generalized \(M\)-estimators; B-splines Software:FastICA × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Amari, S. (2002). Independent component analysis and method of estimating functions. IEICE Trans. Fundamentals Electronics, Communications and Computer Sciences E85-A 540–547. [2] Amari, S. and Cardoso, J. (1997). Blind source separation—semiparametric statistical approach. IEEE Trans. Signal Process. 45 2692–2700. [3] Bach, F. and Jordan, M. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 3 1–48. · Zbl 1088.68689 · doi:10.1162/153244303768966085 [4] Bickel, P. and Doksum, K. (2001). Mathematical Statistics : Basic Ideas and Selected Topics 1 , 2nd ed. Prentice-Hall, Upper Saddle River, NJ. · Zbl 0403.62001 [5] Bickel, P., Klaassen, C., Ritov, Y. and Wellner, J. (1998). Efficient and Adaptive Estimation for Semiparametric Models . Springer, New York. · Zbl 0894.62005 [6] Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE 86 2009–2025. [7] Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput. 11 157–192. [8] Chen, A. and Bickel, P. J. (2005). Consistent independent component analysis and prewhitening. IEEE Trans. Signal Process. 53 3625–3632. · Zbl 1373.62292 · doi:10.1109/TSP.2005.855098 [9] Comon, P. (1994). Independent component analysis. A new concept? Signal Process. 36 287–314. · Zbl 0791.62004 · doi:10.1016/0165-1684(94)90029-9 [10] Cox, D. D. (1985). A penalty method for nonparametric estimation of the logarithmic derivative of a density function. Ann. Inst. Statist. Math. 37 271–288. · Zbl 0578.62041 · doi:10.1007/BF02481097 [11] de Boor, C. (2001). A Practical Guide to Splines , rev. ed. Springer. · Zbl 0987.65015 [12] Eriksson, J. and Koivunen, V. (2003). Characteristic-function based independent component analysis. Signal Process. 83 2195–2208. · Zbl 1145.94320 · doi:10.1016/S0165-1684(03)00162-2 [13] Hastie, T. and Tibshirani, R. (2002). Independent component analysis through product density estimation. Technical report, Dept. Statistics, Stanford Univ. [14] Huber, P. J. (1985). Projection pursuit (with discussion). Ann. Statist. 13 435–525. · Zbl 0595.62059 · doi:10.1214/aos/1176349519 [15] Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 626–634. [16] Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis . Wiley, New York. [17] Jin, K. (1992). Empirical smoothing parameter selection in adaptive estimation. Ann. Statist. 20 1844–1874. · Zbl 0774.62036 · doi:10.1214/aos/1176348892 [18] Kagan, A., Linnik, Y. and Rao, C. R. (1973). Characterization Problems in Mathematical Statistics . Wiley, New York. · Zbl 0271.62002 [19] Lee, T.-W., Girolami, M. and Sejnowski, T. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 11 417–441. [20] Murphy, S. and van der Vaart, A. (2000). On profile likelihood (with discussion). J. Amer. Statist. Assoc. 95 449–485. JSTOR: · Zbl 0995.62033 · doi:10.2307/2669386 [21] Pham, D. T. and Garat, P. (1997). Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45 1712–1725. · Zbl 0879.94007 · doi:10.1109/78.599941 [22] Samarov, A. and Tsybakov, A. (2004). Nonparametric independent component analysis. Bernoulli 10 565–582. · Zbl 1055.62037 · doi:10.3150/bj/1093265630 [23] Truong, Y. K., Kooperberg, C. and Stone, C. J. (2005). Statistical Modeling with Spline Functions: Methodology and Theory . Springer, New York. [24] van de Geer, S. (2000). Applications of Empirical Process Theory . Cambridge Univ. Press. · Zbl 0953.62049 [25] Vigário, R., Jousmáki, V., Hämäläinen, M., Hari, R. and Oja, E. (1998). Independent component analysis for identification of artifacts in magnetoencephalographic recordings. In Advances in Neural Information Processing Systems 10 229–235. MIT Press, Cambridge. [26] Vlassis, N. and Motomura, Y. (2001). Efficient source adaptivity in independent component analysis. IEEE Trans. Neural Networks 12 559–566. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.