×

zbMATH — the first resource for mathematics

Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes. (English) Zbl 1114.62034
Summary: This paper deals with nonparametric maximum likelihood estimation for Gaussian locally stationary processes. Our nonparametric MLE is constructed by minimizing a frequency domain likelihood over a class of functions. The asymptotic behavior of the resulting estimator is studied. The results depend on the richness of the class of functions. Both sieve estimation and global estimation are considered.
Our results apply, in particular, to estimation under shape constraints. As an example, autoregressive model fitting with a monotonic variance function is discussed in detail, including algorithmic considerations. A key technical tool is the time-varying empirical spectral process indexed by functions. For this process, a Bernstein-type exponential inequality and a central limit theorem are derived. These results for empirical spectral processes are of independent interest.

MSC:
62G05 Nonparametric estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M09 Non-Markovian processes: estimation
62F30 Parametric inference under constraints
65C60 Computational problems in statistics (MSC2010)
60F05 Central limit and other weak theorems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alexander, K. S. (1984). Probability inequalities for empirical processes and the law of the iterated logarithm. Ann. Probab. 12 1041–1067. Correction (1987). Ann. Probab. 15 428–430., Mathematical Reviews (MathSciNet): · Zbl 0549.60024
[2] Birgé, L. and Massart, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113–150. · Zbl 0805.62037
[3] Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 329–375. · Zbl 0954.62033
[4] Birman, M. Š. and Solomjak, M. Z. (1967). Piecewise polynomial approximations of functions in the classes \(W_p^\alpha\). Math. USSR-Sb. 73 295–317.
[5] Brockwell P. J. and Davis, R. A. (1991). Time Series: Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[6] Chandler, G. and Polonik, W. (2006). Discrimination of locally stationary time series based on the excess mass functional. J. Amer. Statist. Assoc. 101 240–253. · Zbl 1118.62358
[7] Chen, X. and Shen, X. (1998). Sieve extremum estimates for weakly dependent data. Econometrica 66 289–314. JSTOR: · Zbl 1055.62544
[8] Dahlhaus, R. (1996). On the Kullback–Leibler information divergence for locally stationary processes. Stochastic Process. Appl. 62 139–168. · Zbl 0849.60032
[9] Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Statist. 25 1–37. · Zbl 0871.62080
[10] Dahlhaus, R. (2000). A likelihood approximation for locally stationary processes. Ann. Statist. 28 1762–1794. · Zbl 1010.62078
[11] Dahlhaus, R. and Giraitis, L. (1998). On the optimal segment length for parameter estimates for locally stationary time series. J. Time Series Anal. 19 629–655. · Zbl 0921.62107
[12] Dahlhaus, R. and Neumann, M. H. (2001). Locally adaptive fitting of semiparametric models to nonstationary time series. Stochastic Process. Appl. 91 277–308. · Zbl 1046.62032
[13] Dahlhaus, R., Neumann, M. H. and von Sachs, R. (1999). Nonlinear wavelet estimation of time-varying autoregressive processes. Bernoulli 5 873–906. · Zbl 0954.62103
[14] Dahlhaus, R. and Polonik, W. (2005). Empirical spectral processes for locally stationary time series. Technical report. · Zbl 1204.62156
[15] Eggermont, P. P. B. and LaRiccia, V. N. (2001). Maximum Penalized Likelihood Estimation 1 . Density Estimation . Springer, New York. · Zbl 0984.62026
[16] Guo, W., Dai, M., Ombao, H. and von Sachs, R. (2003). Smoothing spline ANOVA for time-dependent spectral analysis. J. Amer. Statist. Assoc. 98 643–652. · Zbl 1040.62082
[17] Kim, W. (2001). Nonparametric kernel estimation of evolutionary autoregressive processes. Discussion paper 103, Sonderforschungsbereich 373, Humboldt Universität Berlin.
[18] Lorentz, G. G. (1966). Approximation of Functions . Holt, Rinehart and Winston, New York. · Zbl 0153.38901
[19] Neumann, M. H. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 38–76. · Zbl 0871.62081
[20] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference . Wiley, New York. · Zbl 0645.62028
[21] Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates. Ann. Statist. 22 580–615. · Zbl 0805.62008
[22] van de Geer, S. A. (2000). Empirical Processes in \(M\)-Estimation . Cambridge Univ. Press. · Zbl 0953.62049
[23] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[24] Whittle, P. (1953). Estimation and information in stationary time series. Ark. Mat. 2 423–434. · Zbl 0053.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.