Semiparametric estimation of fractional cointegrating subspaces. (English) Zbl 1114.62084

Summary: We consider a common-components model for multivariate fractional cointegration, in which the \(s\geq 1\) components have different memory parameters. The cointegrating rank may exceed 1. We decompose the true cointegrating vectors into orthogonal fractional cointegrating subspaces such that vectors from distinct subspaces yield cointegrating errors with distinct memory parameters. We estimate each cointegrating subspace separately, using appropriate sets of eigenvectors of an averaged periodogram matrix of tapered, differenced observations, based on the first \(m\) Fourier frequencies, with \(m\) fixed. The angle between the true and estimated cointegrating subspaces is \(o_p(1)\).
We use the cointegrating residuals corresponding to an estimated cointegrating vector to obtain a consistent and asymptotically normal estimate of the memory parameter for the given cointegrating subspace, using a univariate Gaussian semiparametric estimator with a bandwidth that tends to \(\infty\) more slowly than \(n\). We use these estimates to test for fractional cointegration and to consistently identify the cointegrating subspaces.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M15 Inference from stochastic processes and spectral analysis
62G05 Nonparametric estimation
62H12 Estimation in multivariate analysis
62G20 Asymptotic properties of nonparametric inference


Full Text: DOI arXiv


[1] Anderson, T. W. and Das Gupta, S. (1963). Some inequalities on characteristic roots of matrices. Biometrika 50 522–524. JSTOR: · Zbl 0133.41602
[2] Barlow, J. L. and Slapničar, I. (2000). Optimal perturbation bounds for the Hermitian eigenvalue problem. Linear Algebra Appl. 309 19–43. · Zbl 0957.15015
[3] Chen, W. W. and Hurvich, C. M. (2003a). Estimating fractional cointegration in the presence of polynomial trends. J. Econometrics 117 95–121. · Zbl 1027.62066
[4] Chen, W. W. and Hurvich, C. M. (2003b). Semiparametric estimation of multivariate fractional cointegration. J. Amer. Statist. Assoc. 463 629–642. · Zbl 1040.62081
[5] Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7 1–46. JSTOR: · Zbl 0198.47201
[6] Hausman, J. (1978). Specification tests in econometrics. Econometrica 46 1251–1271. JSTOR: · Zbl 0397.62043
[7] Huadle, J. and Robinson, P. (2002). Root-\(n\)-consistent estimation of weak fractional cointegration. Working Paper WP08/02, School of Economics and Business Administration, Univ. Navarra.
[8] Hurvich, C. M. and Chen, W. W. (2000). An efficient taper for potentially overdifferenced long-memory time series. J. Time Ser. Anal. 21 155–180. · Zbl 0958.62085
[9] Hurvich, C. M., Moulines, E. and Soulier, P. (2002). The FEXP estimator for potentially non-stationary linear time series. Stochastic Process. Appl. 97 307–340. · Zbl 1057.62074
[10] Künsch, H. R. (1987). Statistical aspects of self-similar processes. In Proc. 1st World Congress of the Bernoulli Society (Tashkent, 1986) 1 67–74. VNU Sci. Press, Utrecht. · Zbl 0673.62073
[11] Lobato, I. N. (1999). A semiparametric two-step estimator in a multivariate long memory model. J. Econometrics 90 129–153. · Zbl 1070.62504
[12] Magnus, J. R. and Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics . Wiley, Chichester. · Zbl 0912.15003
[13] Marinucci, D. and Robinson, P. M. (2001). Semiparametric fractional cointegration analysis. J. Econometrics 105 225–247. · Zbl 0980.62081
[14] Okamoto, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 763–765. · Zbl 0261.62043
[15] Rao, C. R. (1973). Linear Statistical Inference and Its Applications , 2nd ed. Wiley, New York. · Zbl 0256.62002
[16] Robinson, P. M. (1994). Semiparametric analysis of long-memory time series. Ann. Statist. 22 515–539. · Zbl 0795.62082
[17] Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630–1661. · Zbl 0843.62092
[18] Robinson, P. M. and Marinucci, D. (2001). Narrow-band analysis of nonstationary processes. Ann. Statist. 29 947–986. · Zbl 1012.62100
[19] Robinson, P. M. and Marinucci, D. (2003). Semiparametric frequency-domain analysis of fractional cointegration. In Time Series with Long Memory (P. M. Robinson, ed.) 334–373. Oxford Univ. Press.
[20] Robinson, P. M. and Yajima, Y. (2002). Determination of cointegrating rank in fractional systems. J. Econometrics 106 217–241. · Zbl 1038.62082
[21] Siskind, V. (1972). Second moments of inverse Wishart-matrix elements. Biometrika 59 690–691. JSTOR:
[22] Stewart, G. W. and Sun, J. (1990). Matrix Perturbation Theory . Academic Press, San Diego. · Zbl 0706.65013
[23] Velasco, C. (2003). Gaussian semi-parametric estimation of fractional cointegration. J. Time Ser. Anal. 24 345–378. · Zbl 1050.62098
[24] Wedin, P. A. (1983). On angles between subspaces of a finite dimensional inner product space. In Matrix Pencils. Lecture Notes in Math. 973 263–285. Springer, New York. · Zbl 0507.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.