×

Nonparametric estimation in a nonlinear cointegration type model. (English) Zbl 1114.62089

Summary: We derive an asymptotic theory of nonparametric estimation for a time series regression model \(Z_t= f(X_t)+W_t\), where \(\{X_t\}\) and \(\{Z_t\}\) are observed nonstationary processes and \(\{W_t\}\) is an unobserved stationary process. In econometrics, this can be interpreted as a nonlinear cointegration type relationship, but we believe that our results are of wider interest. The class of nonstationary processes allowed for \(\{X_t\}\) is a subclass of the class of null recurrent Markov chains. This subclass contains random walk, unit root processes and nonlinear processes. We derive the asymptotics of a nonparametric estimate of \(f(x)\) under the assumption that \(\{W_t\}\) is a Markov chain satisfying some mixing conditions. The finite-sample properties of \(\widehat{f(x)}\) are studied by means of simulation experiments.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62M05 Markov processes: estimation; hidden Markov models
91B84 Economic time series analysis

References:

[1] Aparicio, F. M. and Escribano, A. (1998). Information-theoretic analysis of serial dependence and cointegration. Stud. Nonlinear Dynam. Econom. 3 119–140. · Zbl 1079.62539 · doi:10.2202/1558-3708.1044
[2] Bandi, F. M. (2003). Persistence and nonparametric estimation: Some observations. Technical report, Grad. School Business, Univ. Chicago.
[3] Bec, F. and Rahbek, A. (2002). Vector equilibrium correction models with nonlinear discontinuous adjustments. Technical report, Dept. Statistics and Operations Research, Univ. Copenhagen. · Zbl 1114.91338
[4] Bolthausen, E. (1980). The Berry–Esseén theorem for functionals of discrete Markov chains. Z. Wahrsch. Verw. Gebiete 54 59–73. · Zbl 0431.60019 · doi:10.1007/BF00535354
[5] Bolthausen, E. (1982). The Berry–Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 283–289. · Zbl 0476.60022 · doi:10.1007/BF00535716
[6] Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation and testing. Econometrica 55 251–276. JSTOR: · Zbl 0613.62140 · doi:10.2307/1913236
[7] Escribano, A. (2004). Nonlinear error-correction: The case of money demand in the United Kingdom (1878–2000). Macroeconomic Dynamics 8 76–116. · Zbl 1180.91228 · doi:10.1017/S1365100503030013
[8] Escribano, A. and Mira, S. (2002). Nonlinear error correction models. J. Time Ser. Anal. 23 509–522. · Zbl 1062.62169 · doi:10.1111/1467-9892.00276
[9] Feigin, P. D. and Tweedie, R. L. (1985). Random coefficient autoregressive processes: A Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal. 6 1–14. · Zbl 0572.62069 · doi:10.1111/j.1467-9892.1985.tb00394.x
[10] Granger, C. W. J. (1983). Co-integrated variables and error-correcting models. UCSD discussion paper, Univ. California, San Diego.
[11] Granger, C. W. J. (1995). Modelling nonlinear relationships between extended-memory variables. Econometrica 63 265–279. JSTOR: · Zbl 0826.90022 · doi:10.2307/2951626
[12] Granger, C. W. J. and Hallman, J. (1991). Long memory series with attractors. Oxford Bulletin Economics and Statistics 53 11–26. · Zbl 0721.62088
[13] Granger, C. W. J. and Lee, T. H. (1989). Investigation of production, sales and inventory relationships using multicointegration and non-symmetric error correction models. J. Appl. Econometrics 4 145–159.
[14] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[15] Hamilton, J. D. (1994). Time Series Analysis . Princeton Univ. Press, Princeton, NJ. · Zbl 0831.62061
[16] Hansen, B. E. and Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. J. Econometrics 110 293–318. · Zbl 1044.62092 · doi:10.1016/S0304-4076(02)00097-0
[17] Hendry, D. and Ericsson, N. (1991). An econometric analysis of U.K. money demand in Monetary Trends in the United States and the United Kingdom by Milton Friedman and Anna J. Schwartz. Amer. Economic Review 81 8–38.
[18] Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59 1551–1580. JSTOR: · Zbl 0755.62087 · doi:10.2307/2938278
[19] Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models . Oxford Univ. Press. · Zbl 0928.62069 · doi:10.1093/0198774508.001.0001
[20] Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2006). Nonparametric estimation in a nonstationary framework. Technical report, Dept. Mathematics, Univ. Bergen. In preparation. · Zbl 1114.62089
[21] Karlsen, H. A. and Tjøstheim, D. (1998). Nonparametric estimation in null recurrent time series. Sonderforschungsbereich 373, Humboldt-Universität zu Berlin. · Zbl 1103.62335
[22] Karlsen, H. A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist. 29 372–416. · Zbl 1103.62335 · doi:10.1214/aos/1009210546
[23] Myklebust, T., Karlsen, H. A. and Tjøstheim, D. (2003). A Markov chain characterization of unit root processes and the problem of nonlinear cointegration. Under revision. · Zbl 1234.62122
[24] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators . Cambridge Univ. Press. · Zbl 0551.60066
[25] Park, J. Y. and Phillips, P. C. B. (2001). Nonlinear regressions with integrated time series. Econometrica 69 117–161. JSTOR: · Zbl 0999.62050 · doi:10.1111/1468-0262.00180
[26] Phillips, P. C. B. and Park, J. Y. (1998). Nonstationary density estimation and kernel autoregression. Cowles Foundation Discussion Paper 1181, Yale Univ.
[27] Xia, Y. (1998). On some nonparametric and semiparametric approaches to time series modelling. Ph.D. dissertation, Univ. Hong Kong.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.