×

zbMATH — the first resource for mathematics

Dimension reduction with linear discriminant functions based on an odds ratio parameterization. (English) Zbl 1114.62339
Summary: The association of two random elements with positive joint probability density function is given by an odds ratio function. The covariance is an adequate description only in the case of two jointly Gaussian variables. The impact of the association structure on the set-up and solution of problems of linear discrimination is investigated, and the results are related to standard techniques of multivariate analysis, particularly to canonical correlation analysis, analysis of contingency tables, discriminant analysis and multidimensional scaling.

MSC:
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H20 Measures of association (correlation, canonical correlation, etc.)
62H17 Contingency tables
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Albert, J.H. & Chib, S. (1993). Bayesian Analysis of Binary and Polychotomous Response Data. J. Amer. Statist. Ass. , 88, 669-679. · Zbl 0774.62031
[2] Amari, S.I. (1990). Differential Geometrical Methods in Statistics . New York: Springer. · Zbl 0701.62008
[3] Applebaum, D. (1996). Probability and Information . Cambridge: Cambridge University Press. · Zbl 0857.60001
[4] Breiman, L. & Ihaka, R. (1984). Nonlinear Discriminant Analysis via ACE and Scaling. Technical Report 40, Dept. of Statistics, University of California, Berkeley.
[5] Blyth, S. (1994). Local Divergence and Association. Biometrika , 81, 579-584. · Zbl 0810.62009
[6] Christensen, R. (1990). Log-Linear Models . New York: Springer. · Zbl 0711.62050
[7] Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory . New York: Wiley. · Zbl 0762.94001
[8] Cox, D.R. & Brandwood, L. (1959). On a Discriminatory Problem Connected with the Works of Plato. J. Roy. Statist. Soc. B , 21, 195-200. · Zbl 0086.35602
[9] Cox, D.R. & Wermuth, N. (1996). Multivariate Dependencies: Models, Analysis and Interpretation . London: Chapman and Hall. · Zbl 0880.62124
[10] Gokhale, D.V. & Kullback, S. (1978). The Information in Contingency Tables . New York: Dekker. · Zbl 0405.62002
[11] Goodman, L.A. (1985). The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or Without Missing Entries. Ann.Statist. , 13, 10-69. · Zbl 0613.62070
[12] Goodman, L.A. (1986). Some Useful Extensions of the Usual Correspondence Analysis Approach and the Usual Log-Linear Models Approach in the Analysis of Contingency Tables. Int. Statist. Rev. , 54, 243-309 (with discussion). · Zbl 0611.62060
[13] Goodman, L.A. (1991). Measures, Models, and Graphical Displays in the Analysis of Cross-Classified Data. J. Amer. Statist. Ass. , 86, 1085-1138 (with discussion). · Zbl 0850.62093
[14] Goodman, L.A. (1996). A Single General Method for the Analysis of Cross-Classified Data: Reconciliation and Synthesis of Some Methods of Pearson, Yule, and Fisher, and Also Some Methods of Correspondence Analysis and Association Analysis. J. Amer. Statist. Ass. , 91, 408-428. · Zbl 0871.62051
[15] Gower, J.C. & Hand, D.J. (1996). Biplots . London: Chapman and Hall. · Zbl 0867.62053
[16] Grambsch, P.M., Randall, B.L., Bostick, R.M., Potter, J.D. & Louis, T.A. (1995). Modeling the Labeling Index Distribution: an Application of Functional Data Analysis. J. Amer. Statist. Ass. , 90, 813-821. · Zbl 0850.62092
[17] Hastie, T., Tibshirani, R. & Buja, A. (1994). Flexible Discriminant Analysis by Optimal Scoring. J. Amer. Statist. Ass. , 89, 1255-1270. · Zbl 0812.62067
[18] Hastie, T., Buja, A. & Tibshirani, R. (1995). Penalized Discriminant Analysis. Ann. Statist. , 23, 73-102. · Zbl 0821.62031
[19] Huang, X.-N. & Li, B.-B. (1991). A New Discriminant Technique: Bayes-Fisher Discrimination. Biometrics , 47, 741-744. · Zbl 0735.62061
[20] Jessop, A. (1995). Informed Assessments . New York : Ellis Horwood. · Zbl 0838.94009
[21] Joe, H. (1997). Multivariate Models and Dependence Concepts . London: Chapman and Hall. · Zbl 0990.62517
[22] Jolliffe, I.T. (1986). Principal Component Analysis . New York: Springer. · Zbl 0584.62009
[23] Jones, M.C. & Rice, J.A. (1992). Displaying the Important Features of Collections of Similar Curves. The American Statistician , 46, 140-145.
[24] Kent, J.T. (1983). Information Gain and a General Measure of Correlation. Biometrika , 70, 163-173. · Zbl 0521.62003
[25] Kshirsagar, A.M. (1972). Multivariate Analysis . New York: Dekker. · Zbl 0246.62064
[26] Kullback, S. (1959). Information Theory and Statistics . (Dover Edition, 1968). Mineola, New York : Dover Publications, Inc. · Zbl 0088.10406
[27] Lauritzen, S.L. & Wermuth, N. (1989). Graphical Models for Associations Between Variables, Some of Which Are Qualitative and Some Quantitative. Ann.Statist. , 17, 31-57. · Zbl 0669.62045
[28] Mardia, K.V., Kent, J.T. & Bibby, J.M. (1979). Multivariate Analysis . (Tenth edition 1995). New York/London: Academic Press/Harcourt Brace & Company. · Zbl 0432.62029
[29] Mari, D.D. & Kotz, S. (2001). Correlation and Dependence . London: Imperial College Press. · Zbl 0977.62004
[30] Nelsen, R.B. (1999). An Introduction to Copulas. Properties and Applications . New York: Springer. · Zbl 0909.62052
[31] Osius, G. (2000). The Association between Two Random Elements: A Complete Characterization in Terms of Odds Ratios. University of Bremen, Mathematik-Arbeitspapiere No. 53. (www.math.uni-bremen.de/\(^\sim\)osius).
[32] Plackett, R.L. (1974). The Analysis of Categorical Data . London: Griffin. · Zbl 0286.62010
[33] Rao, C.R. & Kleffe, J. (1988). Estimation of Variance Components and Applications . Amsterdam: North-Holland/Elsevier. · Zbl 0645.62073
[34] Ripley, B.D. (1996). Pattern Recognition and Neural Networks . Cambridge: University Press. · Zbl 0853.62046
[35] Seber, G.A.F. (1984). Multivariate Observations . New York: Wiley. · Zbl 0627.62052
[36] Soofi, E.S. (1994). Capturing the Intangible Concept of Information. J. Amer. Statist. Ass. , 89, 1243-1254. · Zbl 0810.62012
[37] Tomizawa, S. (1991). Shannon Entropy Type Measure of Departure from Uniform Association in Cross-Classifications Having Ordered Categories. Statist. Prob. Lett. , 11, 547-550. · Zbl 0724.62006
[38] van Houwelingen, J.C. & le Cessie, S. (1988). Logistic Regression, a Review. Statist. Neerl. , 42, 215-232. · Zbl 0715.62117
[39] Witt, L.D., McKean, J.W. & Naranjo, J.D. (1994). Robust Measures of Association in the Correlation Model. Statist. Prob. Lett. , 20, 295-306. · Zbl 0799.62065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.