zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing the eigenvalues of singular Sturm-Liouville problems using the regularized sampling method. (English) Zbl 1114.65095
Summary: This paper deals with singular Sturm-Liouville problems. We shall extend the domain of application of the regularized sampling method, a method to compute the eigenvalues. A few numerical examples will be presented to illustrate the merit of the method.

MSC:
65L15Eigenvalue problems for ODE (numerical methods)
34B24Sturm-Liouville theory
34L16Numerical approximation of eigenvalues and of other parts of the spectrum
WorldCat.org
Full Text: DOI
References:
[1] Bailey, P. B.; Everitt, W. N.; Zettl, A.: Computing eigenvalues of singular Sturm -- Liouville problems. Results in mathematics 20 (1991) · Zbl 0755.65082
[2] Bailey, P. B.; Everitt, W. N.; Weidmann, J.; Zettl, A.: Regular approximations of singular Sturm -- Liouville problems. Results in mathematics 23 (1993) · Zbl 0778.34015
[3] Bailey, P. B.: On the approximation of eigenvalues of singular Sturm -- Liouville problems by those of suitably chosen regular problems. Lecture notes in pure and applied mathematics 191, 171-182 (1997) · Zbl 0881.34038
[4] Bailey, P. B.; Gordon, M. K.; Shampine, L. F.: Automatic solution of the Sturm -- Liouville problem. ACM trans. Math. software 4, 193-208 (1978) · Zbl 0384.65045
[5] Boumenir, A.; Chanane, B.: The computation of negative eigenvalues of singular Sturm -- Liouville problems. I.M.A.J. numer. Anal. 21, No. 2, 489-501 (2001) · Zbl 1009.65053
[6] Boumenir, A.; Chanane, B.: Computing the eigenvalues of Sturm -- Liouville systems of Bessel type. Proc. Edinburgh math. Soc. 42, 257-265 (1999) · Zbl 0931.34063
[7] Boumenir, A.; Chanane, B.: Eigenvalues of S-L systems using sampling theory. Appl. anal. 62, 323-334 (1996) · Zbl 0864.34073
[8] Brown, B. M.; Langer, M.; Marletta, M.; Tretter, C.; Wagenhofer, M.: Eigenvalue bounds for the singular Sturm -- Liouville problem with a complex potential. J. phys. A: math. Gen. 36, 3773-3787 (2003) · Zbl 1058.34113
[9] Chadan, K.; Sabatier, P. C.: Inverse problems in quantum scattering theory. (1989) · Zbl 0681.35088
[10] Chanane, B.: Computation of the eigenvalues of Sturm -- Liouville problems with parameter dependent boundary conditions using the regularized sampling method. Math. comput. 74, No. 252, 1793-1801 (2005) · Zbl 1080.34010
[11] Chanane, B.: High order approximations of the eigenvalues of Sturm -- Liouville problems with coupled self-adjoint boundary conditions. Appl. anal. 80, 317-330 (2001) · Zbl 1031.34030
[12] Chanane, B.: High order approximations of the eigenvalues of regular Sturm -- Liouville problems. J. math. Anal. appl. 226, 121-129 (1998) · Zbl 0916.34029
[13] Chanane, B.: Computing eigenvalues of regular Sturm -- Liouville problems. Appl. math. Lett. 12, 119-125 (1999) · Zbl 0942.34023
[14] Kong, Q.; Zettl, A.: Eigenvalues of regular Sturm -- Liouville problems. J. diff. Equat. 131, 1-19 (1996) · Zbl 0862.34020
[15] M.A. Naimark, Linear Differential Operators, Part II, Ungar, 1968. · Zbl 0227.34020
[16] Pryce, J. D.: Numerical solution of Sturm -- Liouville problems. (1993) · Zbl 0795.65053
[17] Titchmarsh, E. C.: Eigenfunction expansions associated with second order differential equations. (1962) · Zbl 0099.05201
[18] Zayed, A. I.: Advances in Shannon’s sampling theory. (1993) · Zbl 0868.94011