[1] |
Ames, W. F.: Numerical methods for partial differential equations. (1977) · Zbl 0577.65077 |

[2] |
Chapra, S. C.: Surface water-quality modeling. (1997) |

[3] |
Chen, J. Y.; Ko, C. H.; Bhattacharjee, S.; Elimelech, M.: Role of spatial distribution of porous medium surface charge heterogeneity in colloid transport. Colloids and surfaces A: physicochemical and engineering aspects 191, No. 1 -- 2, 3-15 (2001) |

[4] |
Dehghan, M.: Numerical schemes for one-dimensional parabolic equations with nonstandard initial condition. Applied mathematics and computation 147, No. 2, 321-331 (2004) · Zbl 1033.65068 |

[5] |
Dehghan, M.: Weighted finite difference techniques for the one-dimensional advection -- diffusion equation. Applied mathematics and computation 147, No. 2, 307-319 (2004) · Zbl 1034.65069 |

[6] |
Dehghan, M.: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Applied numerical mathematics 52, No. 1, 39-62 (2005) · Zbl 1063.65079 |

[7] |
Gerald, C. F.; Wheatley, P. O.: Applied numerical analysis. (2004) · Zbl 0684.65002 |

[8] |
Jury, W. A.; Roth, K.: Transfer functions and solute movement through soil: theory and applications. (1990) |

[9] |
Leonard, B. P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer methods in applied mechanics and engineering 19, 59-98 (1979) · Zbl 0423.76070 |

[10] |
Lin, Y. C.; Chang, M. S.; Medina, J. M. A.: A methodology for solute transport in unsteady, nonuniform streamflow with subsurface interaction. Advances in water resources 28, No. 8, 871-883 (2005) |

[11] |
Morton, K. W.; Mayers, D. F.: Numerical solution of partial differential equations : an introduction. (1994) · Zbl 0811.65063 |

[12] |
O’loughlin, E. M.; Bowmer, K. H.: Dilution and decay of aquatic herbicides in flowing channels. Journal of hydrology 26, No. 3 -- 4, 217-235 (1975) |

[13] |
Sousa, E.; Sobey, I.: On the influence of numerical boundary conditions. Applied numerical mathematics 41, No. 2, 325-344 (2002) · Zbl 0996.65082 |

[14] |
Stamou, A. I.: Improving the numerical modeling of river water quality by using high order difference schemes. Water research 26, No. 12, 1563-1570 (1992) |

[15] |
Thomee, V.: From finite differences to finite elements: a short history of numerical analysis of partial differential equations. Journal of computational and applied mathematics 128, No. 1 -- 2, 1-54 (2001) · Zbl 0977.65001 |

[16] |
W. Zeng, A model for understanding and managing the impacts of sediment behavior on river water quality, Ph.D. thesis, University of GA, Athens, GA, 2000, 244 pp. Available from: <http://getd.galib.uga.edu/public/zeng_wei_200012_phd/zeng_wei_200012_phd.pdf>. |