zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal control for nonlinear singular systems with quadratic performance using neural networks. (English) Zbl 1114.65336
Summary: Optimal control for nonlinear singular system with quadratic performance is obtained using neural networks. This control is in the form of a state feedback function plus a time function. Furthermore, the main feature is that optimality is always preserved by this control; hence, this control is called a quasi-feedback optimal control. To obtain the optimal control, the solution of matrix Riccati differential equation is obtained by feedforward neural network. Accuracy of the neural network solution to the optimal control problem is qualitatively better than Runge-Kutta (RK) solution. The advantage of the proposed approach is that, once the network is trained, it allows instantaneous evaluation of solution at any desired number of points spending negligible computing time and memory. The computation time of the proposed method is shorter than the traditional RK method. A numerical example is presented to illustrate the implementation of artificial neural networks to obtain optimal control.

65K10Optimization techniques (numerical methods)
49J15Optimal control problems with ODE (existence)
49N35Optimal feedback synthesis
Full Text: DOI
[1] Athans, M.; Falb, P. L.: Optimal control. (1966) · Zbl 0196.46303
[2] P. Balasubramaniam, J. Abdul Samath, N. Kumaresan, A. Vincent Antony Kumar, Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks. Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.06.020. · Zbl 1107.65057
[3] Banks, S. P.: Exact boundary controllability and optimal control for a generalized Korteweg de Vries equation. Int. nonlinear anal. 47, 5537-5546 (2001) · Zbl 1042.93503
[4] Brunovsky, P.: On optimal stabilization of nonlinear systems in mathematical theory of control. 180-189 (1967) · Zbl 0266.49030
[5] Burghart, J. H.: A technique for suboptimal feedback control of nonlinear systems. IEEE trans. Automat. control 14, 530-533 (1969)
[6] Campbell, S. L.: Singular systems of differential equations. (1980) · Zbl 0419.34007
[7] Campbell, S. L.: Singular systems of differential equations II. (1982) · Zbl 0482.34008
[8] Chen, F. C.; Liu, C. C.: Adaptively controlling nonlinear continuous-time systems using multilayer neural networks. IEEE trans. Automat. control 39, 1306-1310 (1994) · Zbl 0812.93050
[9] Cimen, T.; Banks, S. P.: Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica 40, 1845-1863 (2004) · Zbl 1059.93505
[10] Dai, L.: Singular control systems. Lecture notes in control and information sciences (1989) · Zbl 0669.93034
[11] Da Prato, G.; Ichikawa, A.: Quadratic control for linear periodic systems. Appl. math. Optim. 18, 39-66 (1988) · Zbl 0647.93057
[12] Durdeok, R. C.: An approximate technique for suboptimal control. IEEE trans. Automat. control 10, 144-149 (1965)
[13] Ellacott, S. W.: Aspects of the numerical analysis of neural networks. Acta numer. 5, 145-202 (1994) · Zbl 0807.65007
[14] F.M. Ham, E.G. Collins, A neurocomputing approach for solving the algebraic matrix Riccati equation, in: Proceedings IEEE International Conference on Neural Networks, vol. 1, 1996, pp. 617 -- 622.
[15] Jamshidi, M.: An overview on the solutions of the algebraic matrix Riccati equation and related problems. Large scale syst. 1, 167-192 (1980) · Zbl 0453.93025
[16] Jodar, L.; Navarro, E.: Closed analytical solution of Riccati type matrix differential equations. Indian J. Pure appl. Math. 23, 185-187 (1992) · Zbl 0765.34001
[17] Lagaris, I. E.; Likas, A.; Fotiadis, D. I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE trans. Neural networks 9, 987-1000 (1998) · Zbl 0940.35018
[18] Lewis, F. L.: A survey of linear singular systems. Circ. syst. Signal process. 5, 3-36 (1986) · Zbl 0613.93029
[19] Longmuta, A. G.; Born, E. V.: The synthesis of suboptimal feedback control laws. IEEE trans. Automat. control 12, 758-775 (1967)
[20] Lukes, D. L.: Optimal regulation of nonlinear systems. SIAM J. Control 7, 75-100 (1969) · Zbl 0184.18802
[21] Miller, W. T.; Sutton, R.; Werbos, P.: Neural networks for control. (1990) · Zbl 0850.68282
[22] Narendra, K. S.; Lewis, F. L.: Special issue on neural network feedback control. Automatica 37, 1147-1148 (2001) · Zbl 0986.00038
[23] Parisini, T.; Zoppoli, R.: Neural approximations for infinitehorizon optimal control of nonlinear stochastic systems. IEEE trans. Neural networks 9, 1388-1408 (1998)
[24] A.P. Paplinski, Lecture Notes on Feedforward Multilayer Neural Networks, NNet(L.5), 2004.
[25] Polak, E.: Optimisation-algorithms and consistent approximations. New York (1997) · Zbl 0899.90148
[26] Polycarpou, M. M.: Stable adaptive neural control scheme for nonlinear systems. IEEE trans. Automat. control 41, 447-451 (1996) · Zbl 0846.93060
[27] Rovithakis, G. A.; Christodoulou, M. A.: Adaptive control of unknown plants using dynamical neural networks. IEEE trans. Systems, man cybernet. 24, 400-412 (1994) · Zbl 0824.93037
[28] Sadegh, N.: A perceptron network for functional identification and control of nonlinear systems. IEEE trans. Neural networks 4, 982-988 (1993)
[29] Wang, J.; Wu, G.: A multilayer recurrent neural network for solving continuous-time algebraic Riccati equations. Neural networks 11, 939-950 (1998)
[30] De Wilde, P.: Neural network models. (1997) · Zbl 0869.68070
[31] Yamamoto, Y.: Controllability of nonlinear systems. J. optim. Theory appl. 22, 41-49 (1977) · Zbl 0336.93009
[32] Yamamoto, Y.; Sugiura, I.: Some sufficient conditions for the observability of nonlinear systems. J. optim. Theory appl. 13, 660-669 (1974) · Zbl 0261.93006