zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An algorithm for solving singular perturbation problems with mechanization. (English) Zbl 1114.65340
Summary: In this paper, by using the theories and methods of mathematical analysis and computer algebra, a reliable algorithm of finite difference method for solving singular perturbation problems is established, a new matlab procedure EHSSP is implemented, too. Several linear and non-linear problems are presented to illustrate the implementation of the program.

65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
68W30Symbolic computation and algebraic computation
34E15Asymptotic singular perturbations, general theory (ODE)
65L12Finite difference methods for ODE (numerical methods)
Full Text: DOI
[1] Wu, W.: Basic principles of mechanical theorem proving in elementary geometries. J. automat. Reasoning. 2, 221-252 (1986) · Zbl 0642.68163
[2] Glimm, J. G.: Mathematical sciences, technology, and economic competitiveness. (1992)
[3] Reddy, Y. N.; Chakravarthy, P. P.: An initial-value approach for solving singular perturbed two-point boundary value problems. Appl. math. Comput. 155, 95-110 (2004) · Zbl 1058.65079
[4] Reddy, Y. N.; Chakravarthy, P. Pramod: Numerical patching method for singularly perturbed two-point boundary value problems using cubic splines. Appl. math. Comput. 149, 441-468 (2005) · Zbl 1038.65068
[5] Suli, E.: Numerical solution of ordinary differential equations. (2001)
[6] Ascher, U.; Mattheij, R.; Russell, R.: Numerical solution of boundary value problems for ordinary differential equations. (1995) · Zbl 0843.65054
[7] Roos, H. -G.; Stynes, M.; Tobiska, L.: Numerical methods for singularly perturbed differential equations. (1996) · Zbl 0844.65075
[8] Fornberg, B.: Calculation of weights in finite difference formulas. SIAM, rev. 40, 685-691 (1998) · Zbl 0914.65010
[9] S. Wolfram, The numerical method of lines for partial differential equations. Available from: <http://www.wolfram.com/>.
[10] Burden, R. L.; Faires, J. D.: Numerical analysis. (1989) · Zbl 0671.65001
[11] Maron, M. J.: Numerical analysis: A practical approach. (1982) · Zbl 0494.65001
[12] Gilbert, J. R.; Moler, C.; Schreiber, R.: Sparse matrices in Matlab: design and implementation. (1992) · Zbl 0752.65037
[13] Baltensperger, R.; Trummer, M. R.: Spectral differencing with a twist. SIAM J. Sci. comput. (2002) · Zbl 1034.65016
[14] Friendman, A.; Glimm, J.; Lavery, J.: The mathematical and computational sciences in emerging manufacturing technogies and management practies. (1992)
[15] Glimm, J. G.: Mathematical sciences, technology, and economic competitiveness. (1992)
[16] Duffy, D. J.: Advanced engineering mathematics with Matlab. (2003) · Zbl 1018.00003
[17] Ashino, R.; Nagase, M.; Vaillancourt, R.: Behind and beyond the Matlab ODE suite. J. comput. Math. appl. 40 (2000) · Zbl 0955.65055
[18] Shampine, L. F.; Thompson, S.: Solving ddes in Matlab. Appl. numer. Math. 37, 441-458 (2001) · Zbl 0983.65079
[19] L.F. Shampine, M.W. Reichelt, and J.Kierzenka, Solving boundary value problems for ordinary differential equations in Matlab with bvp4c, 2000. Available from: <ftp://ftp.mathworks.com/pub/doc/papers/bvp/>.
[20] Baglama, J.; Calvetti, D.; Reichel, L.: Algorithm 827: irbleigs: A Matlab program for computing a few eigenpairs of a large sparse Hermitian matrix. ACM trans. Math. soft. 29, 337-348 (2003) · Zbl 1070.65529
[21] Zeng, Z.: Algorithm 835: multroot --- a Matlab package for computing polynomial roots and multiplicities. ACM trans. Math. soft. 30, 218-236 (2004) · Zbl 1070.65542
[22] Vandewouwera, A.; Saucez, P.; Schiesser, W. E.; Thompson, S.: A Matlab implementation of upwind finite differences and adaptive grids in the method of lines. Comput. appl. Math. 183, 245-258 (2005) · Zbl 1071.65544
[23] Z. Li, W. Wang, Mechanization for solving SPP by reducing order method, Appl. Math. Comput., in press. · Zbl 1119.65361
[24] Bender, C. M.; Orszag, S. A.: Advanced mathematical methods for scientists and engineers. (1978) · Zbl 0417.34001
[25] Kevorkian, J.; Cole, J. D.: Perturbation methods in applied mathematics. (1981) · Zbl 0456.34001
[26] Malley, R. E. O’: Introduction to singular perturbations. (1974)