×

zbMATH — the first resource for mathematics

Finite element analysis on the Lawrence-Doniach model for layered superconductors. (English) Zbl 1114.65349
Summary: A simple fully discrete finite-element method is proposed to solve the time-dependent nonlinear Lawrence-Doniach model for layered superconductors. Numerical stability and optimal energy-norm error estimates are established for the proposed numerical method.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRev.108.1175 · Zbl 0090.45401 · doi:10.1103/PhysRev.108.1175
[2] Bulaevskii L.N., Zh. Eksper. Teoret Fiz. 64 pp 2241– (1973)
[3] DOI: 10.1137/S0036139993256837 · Zbl 0819.35133 · doi:10.1137/S0036139993256837
[4] DOI: 10.1137/1034114 · Zbl 0769.73068 · doi:10.1137/1034114
[5] Chen Z., Technical report 34 (1996)
[6] Chen Z., Adv. Math. Sci. Appl 5 pp 363– (1995)
[7] Chen Z., Euro. J. Appl. Math.
[8] DOI: 10.1002/mma.1670161203 · Zbl 0817.35111 · doi:10.1002/mma.1670161203
[9] Ciarlet P., The Finite Element Method for Elliptic Problems (1978) · Zbl 0383.65058
[10] Ciarlet P., RAIRO Math. Modelling Numer. Anal. (1978)
[11] Crouzeix M., Math. Comp. 48 pp 521– (1987)
[12] DOI: 10.1016/0898-1221(94)90091-4 · Zbl 0802.65128 · doi:10.1016/0898-1221(94)90091-4
[13] DOI: 10.1080/00036819408840240 · Zbl 0843.35019 · doi:10.1080/00036819408840240
[14] Du Q., SI AM J. Appl. Math 53 (1994)
[15] DOI: 10.1137/1034003 · Zbl 0787.65091 · doi:10.1137/1034003
[16] DOI: 10.1007/BF01388682 · Zbl 0792.65095 · doi:10.1007/BF01388682
[17] DOI: 10.1103/PhysRevB.51.16194 · doi:10.1103/PhysRevB.51.16194
[18] Du Q., SIAM J. Math. Anal 51 (1996)
[19] Ginzburg V., Zh. Éksper. Teoret. Fiz. 20 pp 1064– (1950)
[20] Girault V., Finite Element Methods for Navier-Stokes Equations (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[21] Gor’kov L., Zh. Èkspoer. Teoret. Fiz. 36 pp 1918– (1959)
[22] Gor’kov L.P., Soviet Phys. ? JEPT 27 pp 328– (1968)
[23] Hoffmann K.-H., RAIRO Math. Modelling Numer. Anal. 29 pp 629– (1995)
[24] DOI: 10.1103/PhysRevB.12.877 · doi:10.1103/PhysRevB.12.877
[25] Ladyzhenskaya O.A., Linear and Quasilinear Equations of Parabolic Type · Zbl 0182.43204
[26] Lawrence W., SIAM J. Sci. Comput
[27] DOI: 10.1007/BF00655310 · doi:10.1007/BF00655310
[28] Xu J., Theory of multilevel methods
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.