×

Applications of the combined tanh function method with symmetry method to the nonlinear evolution equations. (English) Zbl 1114.65356

Summary: Based on the symbolic computation, we combine the tanh function method with the symmetry method to construct new type of solutions of the nonlinear evolution equations for the first time. With the combined method, some new types of solutions of the coupled \((2 + 1)\)-dimensional nonlinear system of Schrödinger equations are obtained and their properties are studied by analyzing their figures.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
68W30 Symbolic computation and algebraic computation

Software:

MACSYMA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Olver, P.J., Applications of Lie groups to differential equations, (1986), Springer New York · Zbl 0656.58039
[2] Bluman, G.; Kumei, S., Symmetries and differential equations, (1989), Springer New York · Zbl 0698.35001
[3] Clarkson, Peter A.; Kruskal, Martin D., J. math. phys., 30, 2201-2213, (1989)
[4] Lou, S.Y.; Tang, X.Y.; Lin, J., J. math. phys., 41, 8286-8303, (2000)
[5] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[6] Wadati, M.; Sanuki, H.; Konno, K., Prog. theor. phys., 53, 419, (1975)
[7] Konno, K.; Wadati, M., Prog. theor. phys., 53, 652, (1975)
[8] Gu, C.H., Soliton theory and its application, (1995), Springer Berlin
[9] Hirota, R., Phys. rev. lett., 27, 1192, (1971)
[10] Li, Z.B.; Wang, M.L., J. phys. A: math. gen., 26, 6027, (1993)
[11] Wang, M.L., Phys. lett. A, 199, 169, (1995)
[12] Hereman, W., Comput. phys. commun., 65, 143, (1991)
[13] Parkes, E.J.; Duffy, B.R., Comput. phys. commun., 98, 288, (1996)
[14] Fan, E., Phys. lett. A, 294, 26, (2002)
[15] Yan, Z.Y., Phys. lett. A, 292, 100, (2001)
[16] Li, B.; Chen, Y.; Zhang, H.Q., Z. naturforsch. A, 57, 11, 874, (2002)
[17] Conte, R.; Musette, M., Physica A, 25, 5609, (1992)
[18] Bountis, T.C.; Papageorgiou, V.; Winternitz, P., J. math. phys., 27, 1215, (1986)
[19] Yan, C., Phys. lett. A, 224, 77, (1996)
[20] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Phys. lett. A, 289, 69, (2001)
[21] Fu, Z.T.; Liu, S.K.; Liu, S.D.; Zhao, Q., Phys. lett. A, 290, 72, (2001)
[22] Tajiri, M.; Hagiwara, M., J. phys. soc. jpn., 52, 3727-3734, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.