zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Applications of the combined tanh function method with symmetry method to the nonlinear evolution equations. (English) Zbl 1114.65356
Summary: Based on the symbolic computation, we combine the tanh function method with the symmetry method to construct new type of solutions of the nonlinear evolution equations for the first time. With the combined method, some new types of solutions of the coupled $(2 + 1)$-dimensional nonlinear system of Schrödinger equations are obtained and their properties are studied by analyzing their figures.

65M70Spectral, collocation and related methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations
68W30Symbolic computation and algebraic computation
Full Text: DOI
[1] Olver, P. J.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001
[2] Bluman, G.; Kumei, S.: Symmetries and differential equations. (1989) · Zbl 0698.35001
[3] Clarkson, Peter A.; Kruskal, Martin D.: J. math. Phys.. 30, 2201-2213 (1989)
[4] Lou, S. Y.; Tang, X. Y.; Lin, J.: J. math. Phys.. 41, 8286-8303 (2000)
[5] Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering. (1991) · Zbl 0762.35001
[6] Wadati, M.; Sanuki, H.; Konno, K.: Prog. theor. Phys.. 53, 419 (1975)
[7] Konno, K.; Wadati, M.: Prog. theor. Phys.. 53, 652 (1975)
[8] Gu, C. H.: Soliton theory and its application. (1995) · Zbl 0834.35003
[9] Hirota, R.: Phys. rev. Lett.. 27, 1192 (1971)
[10] Li, Z. B.; Wang, M. L.: J. phys. A: math. Gen.. 26, 6027 (1993)
[11] Wang, M. L.: Phys. lett. A. 199, 169 (1995)
[12] Hereman, W.: Comput. phys. Commun.. 65, 143 (1991)
[13] Parkes, E. J.; Duffy, B. R.: Comput. phys. Commun.. 98, 288 (1996)
[14] Fan, E.: Phys. lett. A. 294, 26 (2002)
[15] Yan, Z. Y.: Phys. lett. A. 292, 100 (2001)
[16] Li, B.; Chen, Y.; Zhang, H. Q.: Z. naturforsch. A. 57, No. 11, 874 (2002)
[17] Conte, R.; Musette, M.: Physica A. 25, 5609 (1992)
[18] Bountis, T. C.; Papageorgiou, V.; Winternitz, P.: J. math. Phys.. 27, 1215 (1986)
[19] Yan, C.: Phys. lett. A. 224, 77 (1996)
[20] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 289, 69 (2001)
[21] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q.: Phys. lett. A. 290, 72 (2001)
[22] Tajiri, M.; Hagiwara, M.: J. phys. Soc. jpn.. 52, 3727-3734 (1983)