zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials. (English) Zbl 1114.65370
Summary: Orthogonal Chebyshev polynomials are developed to approximate the solutions of linear and nonlinear Volterra integral equations. Properties of these polynomials and some operational matrices are first presented. These properties are then used to reduce the integral equations to a system of linear or nonlinear algebraic equations. Numerical examples illustrate the pertinent features of the method.

MSC:
65R20Integral equations (numerical methods)
45D05Volterra integral equations
45G10Nonsingular nonlinear integral equations
WorldCat.org
Full Text: DOI
References:
[1] Brunner, H.: Collocation method for Volterra integral and related functional equations. (2004) · Zbl 1059.65122
[2] Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations. (1985) · Zbl 0592.65093
[3] Burton, T. A.: Volterra integral and differential equations. (2005) · Zbl 1075.45001
[4] Chihara, T. S.: An introduction to orthogonal polynomials. (1978) · Zbl 0389.33008
[5] Maleknejad, K.; Kajani, M. T.; Mahmoudi, Y.: Numerical solution of Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32, No. 9 -- 10, 1530-1539 (2003) · Zbl 1059.65127
[6] Maleknejad, K.; Aghazadeh, N.: Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method. Appl. math. Comput. 161, 915-922 (2005) · Zbl 1061.65145
[7] Sezer, M.: Taylor polynomial solution of Volterra integral equations. Int. J. Math. edu. Sci. technol. 25, No. 5, 625 (1994) · Zbl 0823.45005
[8] Yalsinbas, S.: Taylor polynomial solutions of nonlinear Volterra -- Fredholm integral equations. Appl. math. Comput. 127, 195-206 (2002) · Zbl 1025.45003
[9] Rashed, M. T.: Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations. Appl. math. Comput. 151, 869-878 (2004) · Zbl 1048.65133