Maischak, Matthias; Stephan, Ernst P. Adaptive \(hp\)-versions of BEM for Signorini problems. (English) Zbl 1114.74062 Appl. Numer. Math. 54, No. 3-4, 425-449 (2005). Summary: We analyze the \(hp\)-discretization of a boundary integral formulation for the Signorini contact problem of the Laplacian. We prove convergence of the bem Galerkin solution in the energy norm and obtain, under mild regularity assumptions, an a priori error estimate. Using a hierarchical subspace decomposition we derive a reliable and efficient a posteriori error estimate. Based on the hierarchical estimators we present a three-step \(hp\)-adaptive algorithm and present numerical results which yield appropriate mesh refinements and polynomial degree distributions. Cited in 2 ReviewsCited in 34 Documents MSC: 74S15 Boundary element methods applied to problems in solid mechanics 65N38 Boundary element methods for boundary value problems involving PDEs 74M15 Contact in solid mechanics Keywords:Boundary elements; \(hp\)-version; Steklov-Poincaré operator; Signorini contact; Hierarchical error estimator PDF BibTeX XML Cite \textit{M. Maischak} and \textit{E. P. Stephan}, Appl. Numer. Math. 54, No. 3--4, 425--449 (2005; Zbl 1114.74062) Full Text: DOI References: [1] Bank, R.; Smith, R., A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal., 30, 921-935 (1993) · Zbl 0787.65078 [2] Bank, R. E., Hierarchical bases and the finite element method, Acta Numerica, 1-43 (1996) · Zbl 0865.65078 [3] Bernardi, C.; Maday, Y., Polynomial interpolation results in Sobolev spaces, J. Comput. Appl. Math., 43, 53-80 (1992) · Zbl 0767.41001 [4] Carstensen, C., Interface problem in holonomic elastoplasticity, Math. Methods. Appl. Sci., 16, 819-835 (1993) · Zbl 0792.73017 [5] Carstensen, C.; Gwinner, J., FEM and BEM coupling for a nonlinear transmission problem with Signorini contact, SIAM J. Numer. Anal., 34, 1845-1864 (1997) · Zbl 0896.65079 [6] Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19, 3, 613-626 (1988) · Zbl 0644.35037 [7] Costabel, M.; Stephan, E. P., A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106, 367-413 (1985) · Zbl 0597.35021 [8] Falk, R. S., Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971 (1974) · Zbl 0297.65061 [9] Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics (1984), Springer: Springer Berlin · Zbl 0575.65123 [10] Gwinner, J., Discretization of semicoercive variational inequalities, Aequationes Math., 42, 72-79 (1991) · Zbl 0739.65058 [11] Gwinner, J.; Stephan, E. P., A boundary element procedure for contact problems in linear elastostatics, RAIRO Modél Math. Anal. Numer., 27, 457-480 (1993) · Zbl 0773.73096 [12] Han, H., A direct boundary element method for Signorini problems, Math. Comp., 55, 115-128 (1990) · Zbl 0705.65084 [13] Heuer, N.; Mellado, M.; Stephan, E. P., hp-adaptive two-level methods for boundary integral equations on curves, Computing, 67, 305-334 (2001) · Zbl 0995.65122 [14] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and their Applications (1980), Academic Press · Zbl 0457.35001 [15] Kornhuber, R., Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems, Advances in Numerical Mathematics (1997), Teubner-Verlag: Teubner-Verlag Stuttgart · Zbl 0879.65041 [17] Mund, P.; Stephan, E. P., An adaptive two-level method for the coupling of nonlinear FEM-BEM equations, SIAM J. Numer. Anal., 36, 1001-1021 (1999) · Zbl 0938.65138 [18] Spann, W., On the boundary element method for the Signorini problem of the Laplacian, Numer. Math., 65, 337-356 (1993) · Zbl 0798.65106 [19] Tran, T.; Stephan, E. P., Additive Schwarz method for the \(h\)-version boundary element method, Appl. Anal., 60, 63-84 (1996) · Zbl 0877.65075 [20] Vore, R. A.D.; Lorentz, G. G., Constructive Approximation: Polynomials and Splines Approximation (1993), Springer: Springer Berlin This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.