Lindström, Ulf; Roček, Martin; von Unge, Rikard; Zabzine, Maxim Generalized Kähler manifolds and off-shell supersymmetry. (English) Zbl 1114.81077 Commun. Math. Phys. 269, No. 3, 833-849 (2007). Summary: We solve the long standing problem of finding an off-shell supersymmetric formulation for a general \(N = (2, 2)\) nonlinear two dimensional sigma model. Geometrically the problem is equivalent to proving the existence of special coordinates; these correspond to particular superfields that allow for a superspace description. We construct and explain the geometric significance of the generalized Kähler potential for any generalized Kähler manifold; this potential is the superspace Lagrangian. Cited in 56 Documents MSC: 81T60 Supersymmetric field theories in quantum mechanics 53C55 Global differential geometry of Hermitian and Kählerian manifolds 32Q15 Kähler manifolds 81T10 Model quantum field theories 81R12 Groups and algebras in quantum theory and relations with integrable systems × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Gates S.J., Hull C.M., Roček M. (1984) Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B248, 157 · doi:10.1016/0550-3213(84)90592-3 [2] Buscher T., Lindström U., Roček M. (1988) New supersymmetric sigma models with wess-zumino terms. Phys. Lett. B202, 94 [3] Sevrin A., Troost J. (1997) Off-shell formulation of N = 2 non-linear sigma-models. Nucl. Phys. B492, 623 · Zbl 1004.81564 · doi:10.1016/S0550-3213(97)00103-X [4] Bogaerts J., Sevrin A., van der Loo S., Van Gils S. (1999) Properties of semichiral superfields. Nucl. Phys. B562, 277 · Zbl 0958.81194 · doi:10.1016/S0550-3213(99)00490-3 [5] Curtright T.L., Zachos C.K. (1984). Geometry, topology and supersymmetry in nonlinear models. Phys. Rev. Lett. 53: 1799 · Zbl 1287.81045 · doi:10.1103/PhysRevLett.53.1799 [6] Howe P.S., Sierra G. (1984) Two-dimensional supersymmetric nonlinear sigma models with torsion. Phys. Lett. B148, 451 [7] Lyakhovich S., Zabzine M. (2002) Poisson geometry of sigma models with extended supersymmetry. Phys. Lett. B548, 243 · Zbl 0999.81044 [8] Hitchin N. (2003) Generalized calabi-yau manifolds. Q. J. Math. 54(3): 281–308 · Zbl 1076.32019 · doi:10.1093/qmath/hag025 [9] Gualtieri, M. Generalized complex geometry. Oxford University, DPhil thesis, 2004 · Zbl 1079.53106 [10] Lindström U. (2004) Generalized N = (2,2) supersymmetric non-linear sigma models. Phys. Lett. B587, 216 · Zbl 1246.81375 [11] Lindström U., Minasian R., Tomasiello A., Zabzine M. (2005) Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257, 235 · Zbl 1118.53048 · doi:10.1007/s00220-004-1265-6 [12] Lindström U., Roček M., von Unge R., Zabzine M. (2005) Generalized Kaehler geometry and manifest N = (2,2) supersymmetric nonlinear sigma-models. JHEP 0507, 067 · doi:10.1088/1126-6708/2005/07/067 [13] Ivanov I.T., Kim B.B., Roček M. (1995) Complex structures, duality and WZW models in extended superspace. Phys. Lett. B343, 133 [14] Sevrin, A., Troost, J. The geometry of supersymmetric sigma-models. In: Proceedings of the workshop ”Gauge Theories, Applied Supersymmetry and Quantum Gravity”, London: Imperial college, 1996 · Zbl 1004.81564 [15] Grisaru M.T., Massar M., Sevrin A., Troost J. (1997) The quantum geometry of N = (2,2) non-linear sigma-models. Phys. Lett. B412, 53 [16] Hitchin N. (2006) Instantons, Poisson structures and generalized Kähler geometry. Commun. Math. Phys. 265, 131–164 · Zbl 1110.53056 · doi:10.1007/s00220-006-1530-y [17] Arnold, V.I. Mathematical methods of classical mechanics. Translated from the Russian by K. Vogtmann and A. Weinstein. Second Edition. Graduate Texts in Mathematics, 60 New York Springer-Verlag, 1989 [18] Lindström, U., Roček, M. Private communication, in preparation [19] Hitchin N.J., Karlhede A., Lindström U., Roček M. (1987) Hyperkähler Metrics And Supersymmetry. Commun. Math. Phys. 108, 535 · Zbl 0612.53043 · doi:10.1007/BF01214418 [20] Vaisman I. (1994) Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, Vol. 118. Basel: Birkhäuser · Zbl 0810.53019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.