[1] |
Bacciotti, A.: Stabilization by means of state space depending switching rules. Systems & control letters 53, No. 3-4, 195-201 (2004) · Zbl 1157.93480 |

[2] |
Cheng, D.: Controllability of switched bilinear systems. IEEE transactions on automatic control 50, No. 4, 511-515 (2005) |

[3] |
Cheng, D.; Guo, L.; Lin, Y.; Wang, Y.: Stabilization of switched linear systems. IEEE transactions on automatic control 50, No. 5, 661-666 (2005) |

[4] |
Jr., L. T. Conner; Stanford, D. P.: The structure of the controllable set for multimodal systems. Linear algebra and its applications 95, 171-180 (1987) · Zbl 0636.93008 |

[5] |
Decarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE 88, No. 7, 1069-1082 (2000) |

[6] |
Ezzine, J.; Haddad, A. H.: Controllability and observability of hybrid systems. International journal of control 49, No. 6, 2045-2055 (1989) · Zbl 0683.93011 |

[7] |
Ge, S. S.; Sun, Z.; Lee, T. H.: Reachability and controllability of switched linear discrete-time systems. IEEE transactions on automatic control 46, No. 9, 1437-1441 (2001) · Zbl 1031.93028 |

[8] |
Hespanha, J. P.: Uniform stability of switched linear systems: extensions of lasalle’s invariance principle. IEEE transactions on automatic control 49, No. 4, 470-482 (2004) |

[9] |
Hespanha, J. P., & Morse, A. S. (1999). Stability of switched systems with average dwell-time. Proceedings of the 38th IEEE conference on decision and control, Phoenix, AZ (pp. 2655-2660). |

[10] |
Ishii, H.; Basar, T.; Tempo, R.: Randomized algorithms for synthesis of switching rules for multimodal systems. IEEE transactions on automatic control 50, No. 6, 754-767 (2005) |

[11] |
Ji, Z.; Wang, L.; Xie, G.: Quadratic stabilization of switched systems. International journal of systems science 36, No. 7, 395-404 (2005) · Zbl 1121.93063 |

[12] |
Ji, Z.; Wang, L.; Xie, G.; Hao, F.: Linear matrix inequality approach to quadratic stabilisation of switched systems. IEE Proceedings-control theory and applications 151, No. 3, 289-294 (2004) |

[13] |
King, C., & Shorten, R. (2005). On the design of stable state dependent switching laws for single-input single-output systems. Proceedings of the 44th conference decision and control, and the European control conference, December 12-15 (pp. 4863-4866). |

[14] |
Krastanov, M. I.; Veliov, V. M.: On the controllability of switching linear systems. Automatica 41, No. 4, 663-668 (2005) · Zbl 1175.93033 |

[15] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems magazine 19, No. 5, 59-70 (1999) |

[16] |
Meng, B.; Zhang, J.: Reachability conditions for switched linear singular systems. IEEE transactions on automatic control 51, No. 3, 482-488 (2006) |

[17] |
Morse, A. S.: Supervisory control of families of linear set-point controllers, part 2: robustness. IEEE transactions on automatic control 42, No. 11, 1500-1515 (1997) · Zbl 0926.93010 |

[18] |
Petreczky, M.: Reachability of linear switched systems: differential geometric approach. Systems & control letters 55, No. 2, 112-118 (2006) · Zbl 1129.93446 |

[19] |
Stanford, D. P.; Jr., L. T. Conner: Controllability and stabilizability in multi-pair systems. SIAM journal on control and optimization 18, No. 5, 488-497 (1980) · Zbl 0454.93008 |

[20] |
Stikkel, G.; Bokor, J.; Szabó, Z.: Necessary and sufficient condition for the controllability of switching linear hybrid systems. Automatica 40, No. 6, 1093-1097 (2004) · Zbl 1109.93011 |

[21] |
Sun, Z.: Sampling and control of switched linear systems. Journal of the franklin institute 341, 657-674 (2004) · Zbl 1064.94566 |

[22] |
Sun, Z. (2005). A general robustness theorem for switched linear systems. Proceedings of the IEEE international symposium on intelligent control (pp. 8-11), Limassol, Cyprus, June 27-29. |

[23] |
Sun, Z.; Ge, S. S.: Analysis and synthesis of switched linear control systems. Automatica 41, No. 2, 181-195 (2005) · Zbl 1074.93025 |

[24] |
Sun, Z.; Ge, S. S.; Lee, T. H.: Reachability and controllability criteria for switched linear systems. Automatica 38, No. 5, 775-786 (2002) · Zbl 1031.93041 |

[25] |
Wicks, M.; Peleties, P.; Decarlo, R. A.: Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. European journal of control 4, No. 2, 140-147 (1998) · Zbl 0910.93062 |

[26] |
Xie, G.; Wang, L.: Controllability and stabilizability of switched linear-systems. Systems & control letters 48, No. 2, 135-155 (2003) · Zbl 1134.93403 |

[27] |
Xie, G.; Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE transactions on automatic control 49, No. 6, 960-966 (2004) |

[28] |
Yang, Z.: An algebraic approach towards the controllability of controlled switching linear hybrid systems. Automatica 38, No. 7, 1221-1228 (2002) · Zbl 1031.93042 |

[29] |
Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N.: Stability analysis of switched systems with stable and unstable subsystems: an average Dwell time approach. International journal of systems science 32, No. 8, 1055-1061 (2001) · Zbl 1022.93043 |

[30] |
Zhai, G.; Lin, H.; Antsaklis, P. J.: Quadratic stabilizability of switched linear systems with polytopic uncertainties. International journal of control 76, No. 7, 747-753 (2003) · Zbl 1034.93055 |

[31] |
Zhao, J.; Dimirovski, G. M.: Quadratic stability of a class of switched non-linear systems. IEEE transactions on automatic control 49, No. 4, 574-578 (2004) |

[32] |
Chen, C. T.: Linear system theory and design. (1999) |