zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay and its time-derivative dependent robust stability of neutral control system. (English) Zbl 1114.93076
Summary: This paper deals with the problem of delay-dependent robust stability for delay neutral type control system with time-varying structured uncertainties and time-varying delay. Some new delay and its derivative dependent criteria are derived and formulated in the form of linear matrix inequalities (LMIs), the new criteria are less conservative than the existing ones. Numerical examples are given to illustrate the proposed method.

MSC:
93D09Robust stability of control systems
93C41Control problems with incomplete information
93C15Control systems governed by ODE
34H05ODE in connection with control problems
93C05Linear control systems
WorldCat.org
Full Text: DOI
References:
[1] Li, X.; De Souza, C. E.: Criteria for robust stability of uncertain linear systems with time-vary state delays. IFAC 13th world congr. 1, 137-142 (1996)
[2] Lien, C. H.; Yu, K. W.; Hsieh, J. G.: Stability conditions for a class of neutral systems with multiple delays. J. math. Anal. appl 245, 20-27 (2000) · Zbl 0973.34066
[3] Han, Q. L.: On robust stability of neutral systems with time-delay and norm-bounded uncertainty. Automatica 40, 1087-1092 (2004) · Zbl 1073.93043
[4] Chen, J. D.; Lien, C. H.; Fan, K. K.; Chou, J. H.: Criteria for asymptotic stability of a class neutral systems via a LMI approach. IEE proc. Control theory appl. 148, 442-447 (2001)
[5] Fridman, E.: New Lyapunov -- Krasovskiń≠ functionals of linear retarded and neutral type systems. Syst. control lett. 43, 309-319 (2001) · Zbl 0974.93028
[6] S.I. Niculescu, Further remarks on delay-dependent stability of linear neutral systems, in: Proceeding of MTNS 2000, Perpignan, France.
[7] Chen, J. D.; Lien, C. H.: Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems. J. dyna. Sys. mea. Con. 125, 33-41 (2003)
[8] Park, J. H.: On new stability criterion for delay-differential systems of neutral type. Appl. math. Comput. 150, 195-202 (2004) · Zbl 1043.93032
[9] He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Delay-dependent robust stability criteria for uncertain neutral control system with mix delays. Syst. control lett. 51, 57-65 (2004) · Zbl 1157.93467
[10] Yue, D.; Won, S.: An improvement on delay and its time-derivative dependent robust stability of time-delay linear systems with uncertainty. IEEE trans. Automat. cont. 47, 407-408 (2002)
[11] Kim, J. H.: Delay and its time-derivative dependent robust stability of time-delay linear systems with uncertainty. IEEE trans. Automat. cont. 46, 789-792 (2001) · Zbl 1008.93056
[12] Gu, K.: A further refinement of descretized Lyapunov function method for the stability of time delay systems. Int. J. Cont. 40, No. 10, 967-976 (2001) · Zbl 1015.93053
[13] Mao, X.; Koroleva, N.; Rodkina, A.: Robust stability of uncertain stochastic differential delay equation. Syst. control lett. 35, 325-336 (1998) · Zbl 0909.93054
[14] Fridman, E.; Shake, U.: An improved approach stabilization method for linear time-delay systems. IEEE trans. Automat. cont. 47, 1931-1937 (2002)
[15] Wu, M.; He, Y.; She, J. H.; Liu, G. P.: Delay-dependent criteria for robust stability of time-vary delay systems. Automatica 40, 1435-1439 (2004) · Zbl 1059.93108
[16] Hale, J. H.: Theory of functional differential equations. (1977) · Zbl 0352.34001