Wu, Xiaofeng; Wang, Muhong Robust synchronization of chaotic Lur’e systems via replacing variables control. (English) Zbl 1114.93089 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 11, 3421-3433 (2006). Cited in 9 Documents MSC: 93D21 Adaptive or robust stabilization 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 94C05 Analytic circuit theory 93C10 Nonlinear systems in control theory 93C15 Control/observation systems governed by ordinary differential equations 34H05 Control problems involving ordinary differential equations Keywords:chaos synchronization; Lur’e system; replacing variables control; synchronization error; Chua’s circuit PDF BibTeX XML Cite \textit{X. Wu} and \textit{M. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 11, 3421--3433 (2006; Zbl 1114.93089) Full Text: DOI References: [1] Aizerman M. A., Absolute Stability of Regulator Systems (1964) [2] DOI: 10.1016/S0370-1573(02)00137-0 · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0 [3] DOI: 10.1142/S0218127404010758 · Zbl 1061.93051 · doi:10.1142/S0218127404010758 [4] DOI: 10.1142/S0218127403007990 · Zbl 1064.37526 · doi:10.1142/S0218127403007990 [5] DOI: 10.1016/S0960-0779(02)00006-1 · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1 [6] Chua L. O., IEEE Trans. Circuits Syst. 33 pp 1073– [7] DOI: 10.1142/S0218127496001946 · doi:10.1142/S0218127496001946 [8] DOI: 10.1142/S0218127497001096 · Zbl 0910.34054 · doi:10.1142/S0218127497001096 [9] DOI: 10.1142/S0218127497001977 · Zbl 0911.93044 · doi:10.1142/S0218127497001977 [10] DOI: 10.1103/PhysRevE.59.R2523 · doi:10.1103/PhysRevE.59.R2523 [11] DOI: 10.1016/S0375-9601(03)00171-3 · Zbl 1010.37016 · doi:10.1016/S0375-9601(03)00171-3 [12] DOI: 10.1142/S0218127401002626 · Zbl 1090.93535 · doi:10.1142/S0218127401002626 [13] DOI: 10.1142/S0218127403008004 · Zbl 1064.37515 · doi:10.1142/S0218127403008004 [14] DOI: 10.1109/TCSI.2003.809808 · Zbl 1368.94111 · doi:10.1109/TCSI.2003.809808 [15] Li Z., Phys. Lett. A 311 pp 289– [16] DOI: 10.1016/S0960-0779(99)00051-X · Zbl 0967.93059 · doi:10.1016/S0960-0779(99)00051-X [17] DOI: 10.1016/S0960-0779(04)00616-2 · doi:10.1016/S0960-0779(04)00616-2 [18] DOI: 10.1142/S0218127404009855 · Zbl 1099.37504 · doi:10.1142/S0218127404009855 [19] DOI: 10.1016/S0960-0779(02)00005-X · Zbl 1067.37043 · doi:10.1016/S0960-0779(02)00005-X [20] DOI: 10.1016/S0960-0779(04)00383-2 · doi:10.1016/S0960-0779(04)00383-2 [21] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821 [22] DOI: 10.1103/PhysRevA.44.2374 · doi:10.1103/PhysRevA.44.2374 [23] DOI: 10.1142/S0218127403006443 · Zbl 1056.37038 · doi:10.1142/S0218127403006443 [24] DOI: 10.1016/j.chaos.2004.08.009 · Zbl 1081.34074 · doi:10.1016/j.chaos.2004.08.009 [25] DOI: 10.1142/S0218127497000467 · Zbl 0925.93343 · doi:10.1142/S0218127497000467 [26] DOI: 10.1142/S0218127497001059 · Zbl 0967.93508 · doi:10.1142/S0218127497001059 [27] DOI: 10.1109/81.641776 · doi:10.1109/81.641776 [28] DOI: 10.1109/81.633878 · doi:10.1109/81.633878 [29] DOI: 10.1142/S0218127497000455 · Zbl 0925.93342 · doi:10.1142/S0218127497000455 [30] DOI: 10.1142/S0218127498001078 · Zbl 0936.93027 · doi:10.1142/S0218127498001078 [31] DOI: 10.1109/81.774230 · Zbl 1055.93549 · doi:10.1109/81.774230 [32] DOI: 10.1142/9789812705303_0008 · doi:10.1142/9789812705303_0008 [33] DOI: 10.1007/978-3-540-44986-7_6 · doi:10.1007/978-3-540-44986-7_6 [34] DOI: 10.1142/S021812749900081X · doi:10.1142/S021812749900081X [35] DOI: 10.1142/S0218127494000691 · Zbl 0875.93445 · doi:10.1142/S0218127494000691 [36] Wu X. F., Int. J. Bifurcation and Chaos 15 pp 1145– [37] DOI: 10.1142/S021812740501220X · Zbl 1079.93019 · doi:10.1142/S021812740501220X [38] Wu X. F., IEEE Trans. Circuits Syst.-II 52 pp 429– [39] Xie H. M., Theory and Application of Absolute stability (1986) [40] DOI: 10.1142/S021812740100295X · doi:10.1142/S021812740100295X [41] DOI: 10.1109/81.633887 · doi:10.1109/81.633887 [42] DOI: 10.1016/j.chaos.2003.12.093 · Zbl 1089.93018 · doi:10.1016/j.chaos.2003.12.093 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.