×

Robust synchronization of chaotic Lur’e systems via replacing variables control. (English) Zbl 1114.93089

Summary: The sufficient conditions for chaos synchronization of two nonidentical systems by replacing variables control have not been proposed until now. In this paper, synchronization of two chaotic Lur’e systems with parameter mismatch by replacing variables control is studied. First of all, we present a master-slave Lur’e systems synchronization scheme with both parameter mismatch and replacing variables control, and derive a responsive error system for the scheme. A new definition of synchronization with finite \(L_{2}\)-gain is then introduced. Based on the definition, the sufficient synchronization criteria which are in the form of linear matrix inequality (LMI) are proved using a quadratic Lyapunov function. By means of MKY lemma the frequency domain criteria are further derived from the obtained LMIs. These frequency domain criteria are illustrated on the master-slave Chua’s circuits with parameter mismatch so that the ranges of the parameters of Chua’s circuit are analytically solved in the sense of the synchronization with finite \(L_{2}\)-gain by replacing singe-variable control. The illustrative examples verify that within the ranges of the parameters it is possible to synchronize the master-slave Chua’s circuits up to a small synchronization error bound, even the qualitative behaviors of the slave circuit are different from that of the master one, such as the trajectory of the master circuit is chaotic and that of the slave divergent. The relation between the synchronization error bound and parameter mismatch is shown.

MSC:

93D21 Adaptive or robust stabilization
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
94C05 Analytic circuit theory
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
34H05 Control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aizerman M. A., Absolute Stability of Regulator Systems (1964)
[2] DOI: 10.1016/S0370-1573(02)00137-0 · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[3] DOI: 10.1142/S0218127404010758 · Zbl 1061.93051 · doi:10.1142/S0218127404010758
[4] DOI: 10.1142/S0218127403007990 · Zbl 1064.37526 · doi:10.1142/S0218127403007990
[5] DOI: 10.1016/S0960-0779(02)00006-1 · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1
[6] Chua L. O., IEEE Trans. Circuits Syst. 33 pp 1073–
[7] DOI: 10.1142/S0218127496001946 · doi:10.1142/S0218127496001946
[8] DOI: 10.1142/S0218127497001096 · Zbl 0910.34054 · doi:10.1142/S0218127497001096
[9] DOI: 10.1142/S0218127497001977 · Zbl 0911.93044 · doi:10.1142/S0218127497001977
[10] DOI: 10.1103/PhysRevE.59.R2523 · doi:10.1103/PhysRevE.59.R2523
[11] DOI: 10.1016/S0375-9601(03)00171-3 · Zbl 1010.37016 · doi:10.1016/S0375-9601(03)00171-3
[12] DOI: 10.1142/S0218127401002626 · Zbl 1090.93535 · doi:10.1142/S0218127401002626
[13] DOI: 10.1142/S0218127403008004 · Zbl 1064.37515 · doi:10.1142/S0218127403008004
[14] DOI: 10.1109/TCSI.2003.809808 · Zbl 1368.94111 · doi:10.1109/TCSI.2003.809808
[15] Li Z., Phys. Lett. A 311 pp 289–
[16] DOI: 10.1016/S0960-0779(99)00051-X · Zbl 0967.93059 · doi:10.1016/S0960-0779(99)00051-X
[17] DOI: 10.1016/S0960-0779(04)00616-2 · doi:10.1016/S0960-0779(04)00616-2
[18] DOI: 10.1142/S0218127404009855 · Zbl 1099.37504 · doi:10.1142/S0218127404009855
[19] DOI: 10.1016/S0960-0779(02)00005-X · Zbl 1067.37043 · doi:10.1016/S0960-0779(02)00005-X
[20] DOI: 10.1016/S0960-0779(04)00383-2 · doi:10.1016/S0960-0779(04)00383-2
[21] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[22] DOI: 10.1103/PhysRevA.44.2374 · doi:10.1103/PhysRevA.44.2374
[23] DOI: 10.1142/S0218127403006443 · Zbl 1056.37038 · doi:10.1142/S0218127403006443
[24] DOI: 10.1016/j.chaos.2004.08.009 · Zbl 1081.34074 · doi:10.1016/j.chaos.2004.08.009
[25] DOI: 10.1142/S0218127497000467 · Zbl 0925.93343 · doi:10.1142/S0218127497000467
[26] DOI: 10.1142/S0218127497001059 · Zbl 0967.93508 · doi:10.1142/S0218127497001059
[27] DOI: 10.1109/81.641776 · doi:10.1109/81.641776
[28] DOI: 10.1109/81.633878 · doi:10.1109/81.633878
[29] DOI: 10.1142/S0218127497000455 · Zbl 0925.93342 · doi:10.1142/S0218127497000455
[30] DOI: 10.1142/S0218127498001078 · Zbl 0936.93027 · doi:10.1142/S0218127498001078
[31] DOI: 10.1109/81.774230 · Zbl 1055.93549 · doi:10.1109/81.774230
[32] DOI: 10.1142/9789812705303_0008 · doi:10.1142/9789812705303_0008
[33] DOI: 10.1007/978-3-540-44986-7_6 · doi:10.1007/978-3-540-44986-7_6
[34] DOI: 10.1142/S021812749900081X · doi:10.1142/S021812749900081X
[35] DOI: 10.1142/S0218127494000691 · Zbl 0875.93445 · doi:10.1142/S0218127494000691
[36] Wu X. F., Int. J. Bifurcation and Chaos 15 pp 1145–
[37] DOI: 10.1142/S021812740501220X · Zbl 1079.93019 · doi:10.1142/S021812740501220X
[38] Wu X. F., IEEE Trans. Circuits Syst.-II 52 pp 429–
[39] Xie H. M., Theory and Application of Absolute stability (1986)
[40] DOI: 10.1142/S021812740100295X · doi:10.1142/S021812740100295X
[41] DOI: 10.1109/81.633887 · doi:10.1109/81.633887
[42] DOI: 10.1016/j.chaos.2003.12.093 · Zbl 1089.93018 · doi:10.1016/j.chaos.2003.12.093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.