David, Chantal; Fearnley, Jack; Kisilevsky, Hershy On the vanishing of twisted \(L\)-functions of elliptic curves. (English) Zbl 1115.11033 Exp. Math. 13, No. 2, 185-198 (2004). Summary: Let \(E\) be an elliptic curve over \(q\) with \(L\)-function \(L_E(s)\). We use the random matrix model of Katz and Sarnak to develop a heuristic for the frequency of vanishing of the twisted \(L\)-functions \(L_E(1, \chi)\), as \(\chi\) runs over the Dirichlet characters of order 3 (cubic twists). The heuristic suggests that the number of cubic twists of conductor less than \(X\) for which \(L_E(1, \chi)\) vanishes is asymptotic to \(b_E X^{1/2} \log^{e_E}{X}\) for some constants \(b_E, e_E\) depending only on \(E\). We also compute explicitly the conjecture of Keating and Snaith about the moments of the special values \(L_E(1, \chi)\) in the family of cubic twists. Finally, we present experimental data which is consistent with the conjectures for the moments and for the vanishing in the family of cubic twists of \(L_E(s)\). Cited in 1 ReviewCited in 21 Documents MSC: 11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture Keywords:Elliptic curves; L-functions; random matrix theory × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML Online Encyclopedia of Integer Sequences: Number of cubic primitive Dirichlet characters modulo n. References: [1] DOI: 10.1090/S0894-0347-01-00370-8 · Zbl 0982.11033 · doi:10.1090/S0894-0347-01-00370-8 [2] DOI: 10.1515/crll.2002.071 · Zbl 1004.11063 · doi:10.1515/crll.2002.071 [3] Conrey, J. B. and Ghosh, A. ”Mean Values of the Riemann Zeta-Function III. Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). pp.35–59. Salerno: Univ. Salerno. [Conrey and Ghosh 92] · Zbl 0792.11033 [4] DOI: 10.1215/S0012-7094-01-10737-0 · Zbl 1006.11048 · doi:10.1215/S0012-7094-01-10737-0 [5] Conrey J. B., ”Integral Moments of L-Functions.” (2002) [6] Conrey J. B., Number Theory for the Milennium I pp 301– (2002) [7] David C., ”Vanishing of L-Functions of Elliptic Curves Over Number Fields.” (2004) [8] Fearnley J., ”Vanishing and Non-Vanishing of Dirichlet Twists of L-Functions of Elliptic Curves.” (2000) [9] Goldfeld, D. ”Conjectures on Elliptic Curves Over Quadratic Fields.”. Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, III., 1979). pp.108–118. Berlin: Springer. [Goldfeld 79], Lecture Notes in Math. 751 · Zbl 0417.14031 [10] DOI: 10.1016/0022-314X(79)90004-0 · Zbl 0409.10029 · doi:10.1016/0022-314X(79)90004-0 [11] DOI: 10.2307/2939253 · Zbl 0725.11027 · doi:10.2307/2939253 [12] DOI: 10.1007/BF02422942 · JFM 46.0498.01 · doi:10.1007/BF02422942 [13] Ingham A. E., Proceedings of the London Mathematical Society. 92 (27) pp 273– (1926) [14] Iwaniec H., Topics in Classical Automorphic Forms (1997) · Zbl 0905.11023 · doi:10.1090/gsm/017 [15] Jutila M., Analysis 1 pp 149– (1981) · Zbl 0485.10029 · doi:10.1524/anly.1981.1.2.149 [16] DOI: 10.1090/S0273-0979-99-00766-1 · Zbl 0921.11047 · doi:10.1090/S0273-0979-99-00766-1 [17] Katz N. M., Random Matrices, FYobenius Eigenvalues, and Monodromy (1999) [18] DOI: 10.1007/s002200000261 · Zbl 1051.11048 · doi:10.1007/s002200000261 [19] DOI: 10.1007/s002200000262 · Zbl 1051.11047 · doi:10.1007/s002200000262 [20] Kuwata M., ”Points Defined Over Cyclic Cubic Extensions of an Elliptic Curve and Generalised Kummer Surfaces.” (1999) [21] DOI: 10.1007/BF01388731 · Zbl 0699.14028 · doi:10.1007/BF01388731 [22] Murty M. R., Problems in Analytic Number Theory (2001) · Zbl 0971.11001 [23] Rubin K., Exper. Math. 10 (4) pp 559– (2001) · Zbl 1035.11025 · doi:10.1080/10586458.2001.10504676 [24] DOI: 10.1090/S0273-0979-02-00952-7 · Zbl 1052.11039 · doi:10.1090/S0273-0979-02-00952-7 [25] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions. (1971) · Zbl 0221.10029 [26] DOI: 10.2307/2661390 · Zbl 0964.11034 · doi:10.2307/2661390 [27] DOI: 10.1090/S0894-0347-1995-1290234-5 · doi:10.1090/S0894-0347-1995-1290234-5 [28] DOI: 10.2307/2118560 · Zbl 0823.11030 · doi:10.2307/2118560 [29] Watkins M., ”Rank Distribution in a Family of Cubic Twists.” (2004) · Zbl 1213.11138 [30] DOI: 10.2307/2118559 · Zbl 0823.11029 · doi:10.2307/2118559 [31] Zagier D., J. Indian Math. Soc. (N.S.) 52 pp 51– (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.