×

Starlike and convex functions of complex order involving the Dziok-Srivastava operator. (English) Zbl 1115.30013

Summary: Making use of Dziok-Srivastava operator we investigate starlike and convex functions of complex order defined by means of Hadamard product.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Choi J. H., Surikaisekikenkyusho Kokyuroku 1012 pp 1– (1997)
[2] Nasr M. A., Journal of Natural Science and Mathematics 25 pp 1– (1985)
[3] Wiatrowski P., Zesyty Nauk. Uniw. Lodz Nauk. Mat- Przyord. 39 pp 75– (1970)
[4] Altintas O., Complex Variables. Theory and Application 46 pp 207– (2001)
[5] Altintas O., East Asian Mathematical Journal 17 pp 175– (2001)
[6] DOI: 10.2307/1968451 · Zbl 0014.16505
[7] DOI: 10.1080/10652460304543 · Zbl 1040.30003
[8] Liu J.-L., Tamknag Journal of Mathematics 35 pp 37– (2004)
[9] DOI: 10.1137/0515057 · Zbl 0567.30009
[10] DOI: 10.1090/S0002-9939-1975-0367176-1
[11] DOI: 10.1090/S0002-9947-1969-0232920-2
[12] DOI: 10.1090/S0002-9939-1965-0178131-2
[13] DOI: 10.1090/S0002-9939-1966-0188423-X
[14] Srivastava H. M., Nagoya Mathematical Journal 106 pp 1– (1987)
[15] DOI: 10.4153/CJM-1987-054-3 · Zbl 0611.33007
[16] Srivastava, H. M. and Owa, S. 1989. ”Univalent functions, fractional calculus and their applications”. Edited by: Srivastava, H. M. and Owa, S. Chichester: Ellis Horwood Limited. Halsted Press, John Wiley and Sons, Newyork, Chichester, Brisbane and Toronto · Zbl 0683.00012
[17] DOI: 10.1016/0022-247X(92)90373-L · Zbl 0760.30006
[18] Owa S., Kyungpook. Mathematical Journal, 18 pp 53– (1978)
[19] DOI: 10.1007/BF02566116 · Zbl 0261.30015
[20] Lashin A. Y., Indian Journal on Pure Applied Mathematics 34 pp 1101– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.