×

On a question of Gross. (English) Zbl 1115.30029

The author mainly uses the notion of weighted sharing of sets to prove the following two interesting theorems:
Theorem 1: Let \(S_1=\left\{ z:z^n+az^{n-1}+b=0\right\}\), \(S_2=\left\{0\right\}\)and \(S_3=\left\{\infty\right\}\), where \(a\) , \(b\) are nonzero constants such that \(z^n+az^{n-1}+b=0\) has no repeated root and \(n(\geq 4)\) is an integer. If for two nonconstant meromorphic functions \(f\) and \(g\) \(E_f(S_1,4)=E_g(S_1,4), E_f(S_2,0)=E_g(S_2,0)\) and \(E_f(S_3,\infty)=E_g(S_3,\infty)\) and \(\Theta(\infty,f)+\Theta(\infty,g)>0\) then \(f\equiv g\).
Theorem 2: Let \(S_1=\left\{ z:z^n+az^{n-1}+b=0\right\}\), \(S_2=\left\{0\right\}\)and \(S_3=\left\{\infty\right\}\), where \(a\) , \(b\) are nonzero constants such that \(z^n+az^{n-1}+b=0\) has no repeated root and \(n(\geq 3)\) is an integer. If for two nonconstant meromorphic functions \(f\) and \(g\) \(E_f(S_1,6)=E_g(S_1,6), E_f(S_2,0)=E_g(S_2,0)\) and \(E _f(S_3,\infty)=E_g(S_3,\infty)\) and \(\Theta(\infty,f)+\Theta(\infty,g)>1\) then \(f\equiv g\).
The above mentioned uniqueness theorems improve the results of H. Qiu and M. L. Fang [J. Qufu Norm. Univ., Nat. Sci. 17, No. 3, 35–38 (1991; Zbl 0741.30027)] and several other results in this vein.

MSC:

30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory

Citations:

Zbl 0741.30027
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Fang, M.; Xu, W., A note on a problem of Gross, Chinese J. Contemp. Math., 18, 4, 395-402 (1997)
[2] Gross, F., Factorization of meromorphic functions and some open problems, (Proc. Conf. Univ. Kentucky. Proc. Conf. Univ. Kentucky, Lexington, KY, 1976. Proc. Conf. Univ. Kentucky. Proc. Conf. Univ. Kentucky, Lexington, KY, 1976, Lecture Notes in Math., vol. 599 (1977), Springer: Springer Berlin), 51-69
[3] Hayman, W. K., Meromorphic Functions (1964), The Clarendon Press: The Clarendon Press Oxford · Zbl 0115.06203
[4] Lahiri, I., Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28, 2, 83-91 (2001) · Zbl 0999.30023
[5] Lahiri, I., Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161, 193-206 (2001) · Zbl 0981.30023
[6] Lahiri, I., Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46, 241-253 (2001) · Zbl 1025.30027
[7] Lahiri, I., On a question of Hong Xun Yi, Arch. Math. (Brno), 38, 119-128 (2002) · Zbl 1087.30028
[8] Lahiri, I.; Banerjee, A., Uniqueness of meromorphic functions with deficient poles, Kyungpook Math. J., 44, 575-584 (2004) · Zbl 1070.30015
[9] Lahiri, I.; Banerjee, A., Weighted sharing of two sets, Kyungpook Math. J., 46, 1, 79-87 (2006) · Zbl 1103.30017
[10] Qiu, H.; Fang, M., A unicity theorem for meromorphic functions, Bull. Malaysian Math. Sci. Soc., 25, 31-38 (2002) · Zbl 1185.30028
[11] Yang, C. C., On deficiencies of differential polynomials II, Math. Z., 125, 107-112 (1972) · Zbl 0217.38402
[12] Yi, H. X., Meromorphic functions that share one or two values II, Kodai Math. J., 22, 264-272 (1999) · Zbl 0939.30020
[13] Yi, H. X.; Lin, W. C., Uniqueness theorems concerning a question of Gross, Proc. Japan Acad. Ser. A, 80, 136-140 (2004) · Zbl 1112.30028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.