zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Positive solution of singular Dirichlet boundary value problems for second order differential equation system. (English) Zbl 1115.34025
The paper is concerned with the existence of a positive solution to the singular Dirichlet boundary value problem for the second-order ordinary differential system for $0<t<1$ $$ \left\{ \matrix x_1''+f_1(t,x_1,x_2)=0,\\ x_2''+f_2(t,x_1,x_2)=0\\ \endmatrix \right.$$ subject to $$ \left\{ \matrix x_1(0)=x_1(1)=0,\\ x_2(0)=x_2(1)=0,\\ \endmatrix \right.$$ where the nonlinearities $f_1$ and $f_2$ satisfy certain sublinear conditions and may be singular at $x_1=0,\, x_2=0,\, t=0$ and/or $t=1$. Using the method of lower and upper solutions both with the Schauder’s fixed point theorem, the author gives a necessary and sufficient condition for the existence of $C[0,1]\times C[0,1]$ positive solutions as well as $C^1[0,1]\times C^1[0,1]$ positive solutions. The paper ends with an example.

MSC:
34B16Singular nonlinear boundary value problems for ODE
34B15Nonlinear boundary value problems for ODE
34B18Positive solutions of nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] O’regan, D.: Theory of singular boundary value problems. (1994)
[2] Taliaferro, S. D.: A nonlinear singular boundary value problem. Nonlinear anal. 3, No. 6, 897-904 (1979) · Zbl 0421.34021
[3] Zhang, Y.: Positive solutions of singular sublinear Emden -- Fowler boundary value problems. J. math. Anal. appl. 185, No. 1, 215-222 (1994) · Zbl 0823.34030
[4] O’regan, D.: Singular Dirichlet boundary value problems I. Superlinear and nonresonance case. Nonlinear anal. 29, No. 2, 221-249 (1997)
[5] Shaozhu, Chen; Yong, Zhang: Singular boundary value problems on a half-line. J. math. Anal. appl. 195, No. 2, 449-468 (1995) · Zbl 0852.34019
[6] Wei, Zhongli: Positive solutions of singular boundary value problems of negative exponent Emden -- Fowler equations. Acta math. Sinica 41, No. 3, 655-662 (1998) · Zbl 1027.34024
[7] Dunning, D. R.; Wang, H.: Existence and multiplicity of positive solutions for elliptic systems. Nonlinear anal. 29, 1051-1060 (1997) · Zbl 0885.35028
[8] Dunning, D. R.; Wang, H.: Multiplicity of positive radial solutions for an elliptic system on an annulus domain. Nonlinear anal. 42, 803-811 (2000) · Zbl 0959.35051
[9] Lee, Yong-Hoon: Multiplicity of positive radial solutions for multi-parameter semilinear elliptic systems on an annulus. J. differential equations 174, 420-441 (2001) · Zbl 1001.34011
[10] Fink, A. M.; Gatica, J. A.: Positive solutions of second order systems of boundary value problems. J. math. Anal. appl. 180, 93-108 (1993) · Zbl 0807.34024
[11] Ma, R.: Existence of positive radial solutions for elliptic systems. J. math. Anal. appl. 201, 375-386 (1996) · Zbl 0859.35040
[12] Ma, R.: Multiple nonnegative solutions of second order systems of boundary value problems. Nonlinear anal. 42, 1003-1010 (2000) · Zbl 0973.34014
[13] Liu, Xiaoying; Sun, Jingxian: Computation of topological degree and applications to suplinear systems of equations. J. systems sci. Math. sci. 16, No. 1, 51-59 (1996) · Zbl 0897.47050
[14] Zhang, Zhitao: Existence of nontrivial solution for super-linear system of integral equations and its applications. Acta math. Appl. sin. 15, No. 2, 153-162 (1999) · Zbl 0941.45002
[15] Coclite, M. M.; Palmieri, G.: On a singular nonlinear Dirichlet problem. Comm. partial differential equations 14, 1315-1327 (1989) · Zbl 0692.35047
[16] Crandall, M. G.; Rabinowitz, P. H.; Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Comm. partial differential equations 2, 193-222 (1977) · Zbl 0362.35031
[17] Cui, S.: Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems. Nonlinear anal. 41, 149-176 (2000) · Zbl 0955.35026
[18] Ghergu, M.; Řadulescu, V.: Sublinear singular elliptic problems with two parameters. J. differential equations 195, 520-536 (2003) · Zbl 1039.35042
[19] Gomes, S. M.: On a singular nonlinear elliptic problem. SIAM J. Math. anal. 17, 1359-1369 (1986) · Zbl 0614.35037
[20] Lazer, A. C.; Mckenna, P. J.: On a singular elliptic boundary value problem. Proc. amer. Math. soc. 111, 721-730 (1991) · Zbl 0727.35057
[21] Magli, H.; Zribi, M.: Existence and estimates of solutions for singular nonlinear elliptic problems. J. math. Anal. appl. 263, 522-542 (2001) · Zbl 1030.35064
[22] Shi, J.; Yao, M.: On a singular semilinear elliptic problem. Proc. roy. Soc. Edinburgh sect. A math. 128, 1389-1401 (1998) · Zbl 0919.35044
[23] Zhang, Zhijun: The asymptotic behaviour of the unique solution for the singular Lane -- Emden -- Fowler equation. J. math. Anal. appl. 312, 33-43 (2005) · Zbl 1165.35377
[24] Hartman, P.: Ordinary differential equations. (1982) · Zbl 0476.34002