zbMATH — the first resource for mathematics

Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. (English) Zbl 1115.35042
Let \(2^*=2N/(N-2)\) denote the critical Sobolev exponent, where \(N\geq 3\) is an integer. Assume that \(\Omega\) is a bounded domain with smooth boundary in \(\mathbb R^N\), \(\lambda\) is a positive parameter not belonging to the spectrum of \((-\Delta)\), \(f\in L^r(\Omega)\) with \(r>N\), and \(Q\) is a smooth positive potential on \(\overline\Omega\). The authors are concerned with the existence of multiple solutions to the nonlinear elliptic equation \(-\Delta u=\lambda u+Q(x)u_+^{2^*-1}+f(x)\) in \(\Omega\), under the Neumann boundary condition \(\partial u/\partial\nu =0\) on \(\partial\Omega\). By means of variational methods the authors establish the existence of at least two distinct solutions. The proof strongly depends on a careful analysis of Palais-Smale sequences of the associated energy functional. An important role is also played by the common effect of the mean curvature of the boundary and the shape of the graph of the potential \(Q\).

35J60 Nonlinear elliptic equations
35B33 Critical exponents in context of PDEs
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
47J30 Variational methods involving nonlinear operators
Full Text: EuDML
[1] ADIMURTHI - G. MANCINI, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25. Zbl0836.35048 MR1205370 · Zbl 0836.35048
[2] ADIMURTHI - G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), pp. 1-18. Zbl0804.35036 MR1301449 · Zbl 0804.35036 · doi:10.1515/crll.1994.456.1 · crelle:GDZPPN002212048 · eudml:153659
[3] ADIMURTHI - G. MANCINI - S. L. YADAVA, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), pp. 591-631. Zbl0847.35047 MR1318082 · Zbl 0847.35047 · doi:10.1080/03605309508821110
[4] ADIMURTHI - F. PACELLA - S. L. YADAVA, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), pp. 318-350. Zbl0793.35033 MR1218099 · Zbl 0793.35033 · doi:10.1006/jfan.1993.1053
[5] ADIMURTHI - F. PACELLA - S. L. YADAVA, Characterization of concentration points and LQ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), pp. 31-68. Zbl0814.35029 · Zbl 0814.35029
[6] ADIMURTHI - S. L. YADAVA, Critical Sobolev exponent problem in RN (NF4) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), pp. 275-284. Zbl0735.35063 MR1081711 · Zbl 0735.35063
[7] H. BRÉZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), pp. 437-477. Zbl0541.35029 MR709644 · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[8] J. CHABROWSKI, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (3) (2002), pp. 323-333. Zblpre01869587 MR1948080 · Zbl 1195.35122
[9] J. CHABROWSKI, Mean curvature and least energy solutions for the critical Neumann problem with weight, B.U.M.I. B, 5 (8) (2002), pp. 715-733. Zbl1097.35046 MR1934376 · Zbl 1097.35046 · eudml:195200
[10] J. CHABROWSKI - M. WILLEM, Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), pp. 121-131. Zblpre01942729 MR1942126 · Zbl 1221.35116 · doi:10.1007/s00526-002-0101-0
[11] J. F. ESCOBAR, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), pp. 623-657. Zbl0635.35033 MR896771 · Zbl 0635.35033 · doi:10.1002/cpa.3160400507
[12] G. DJAIRO DE FIGUEIREDO - JIANFU YANG, Critical superlinear AmbrosettiProdi problems, TMNA, 14 (1999), pp. 50-80. Zbl0958.35055 · Zbl 0958.35055
[13] D. GILBARG - N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, Berlin (1983) (second edition). Zbl0562.35001 MR737190 · Zbl 0562.35001
[14] P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), pp. 145-201 and pp. 45-120. MR834360 · Zbl 0704.49005
[15] W. M. NI - X. B. PAN - L. TAKAGI, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), pp. 1-20. Zbl0785.35041 MR1174600 · Zbl 0785.35041 · doi:10.1215/S0012-7094-92-06701-9
[16] W. M. NI - L. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851. Zbl0754.35042 MR1115095 · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[17] X. J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. Zbl0766.35017 MR1125221 · Zbl 0766.35017 · doi:10.1016/0022-0396(91)90014-Z
[18] Z. Q. WANG, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), pp. 671-694. Zbl0817.35030 MR1305937 · Zbl 0817.35030
[19] Z. Q. WANG, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), pp. 1533-1554. Zbl0829.35041 MR1329855 · Zbl 0829.35041
[20] M. WILLEM, Min-max Theorems, Boston 1996, Birkhäuser.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.