## Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case.(English)Zbl 1115.35125

Initial value problem for nonlinear Schrödinger equation $i\partial _t u + \Delta u\pm | u | ^{\frac{4}{N - 2}}u = 0, \quad (x,t) \in \mathbb R^N\times \mathbb R,$
$u| _{t = 0} = u_0 \in \dot H^1(\mathbb R^N),$ is considered where the $$-$$ sign corresponds to the defocusing problem, while the $$+$$ sign corresponds to the focusing problem. The authors show: if $$E(u_0 ) < E(W),\| {u_0 } \| _{\dot H^1}< \| W \| _{\dot H^1}$$, $$N = 3,4,5$$ and $$u_0$$ is radial, then the solution $$u$$ with data $$u_0$$ at $$t = 0$$ is defined for all time and there exists $$u_{0, + }$$, $$u_{0, - }$$ in $$\dot H^1$$ such that $\lim _{t \to + \infty} \| u( t) - e^{it\Delta}u_{0, + }\| _{\dot H^1}= 0, \quad \lim_{t \to - \infty} \| u( t) - e^{it\Delta}u_{0, - }\| _{\dot H^1}= 0.$ Here $$W(x) = 1 / (1 + | x | ^2 / N(N - 2))^{\frac{N - 2}{2}}$$ is in $$\dot H^1(\mathbb R^N)$$ and solves the elliptic equation $\Delta W + | W| ^{\frac{4}{N - 2}}W = 0.$ The authors also show that for $$u_0$$ radial, $$| x| u_0 \in L^2(\mathbb R^N)$$, $$E(u_0 ) < E(W)$$, but $$\| {u_0 }\| _{\dot H^1}>\| W\| _{\dot H^1}$$, the solution must break down in finite time.

### MSC:

 35Q55 NLS equations (nonlinear Schrödinger equations) 35B40 Asymptotic behavior of solutions to PDEs 35P25 Scattering theory for PDEs
Full Text:

### References:

 [1] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl., IX. Sér. 55, 269–296 (1976) · Zbl 0336.53033 [2] Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999) · Zbl 0919.35089 · doi:10.1353/ajm.1999.0001 [3] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci., Paris, Sér. I, Math. 293, 489–492 (1981) · Zbl 0492.35010 [4] Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Berlin, New York: Springer 1976 [5] Bourgain, J.: Global well-posedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12, 145–171 (1999) · Zbl 0958.35126 · doi:10.1090/S0894-0347-99-00283-0 [6] Bourgain, J.: New global well-posedness results for nonlinear Schrödinger equations. AMS Colloquium Publications, 46, 1999 · Zbl 0933.35178 [7] Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York: New York University Courant Institute of Mathematical Sciences 2003 · Zbl 1055.35003 [8] Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in H s . Nonlinear Anal., Theory Methods Appl. 14, 807–836 (1990) · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A [9] Colliander, J., Keel, M., Staffilani, G., Takaoke, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $$\mathbb{R}$$3. To appear in Ann. Math. · Zbl 1178.35345 [10] Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998) · Zbl 0907.46027 · doi:10.1051/cocv:1998107 [11] Gerard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. IV, 11. École Polytech. 1997 [12] Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18, 1794–1797 (1977) · Zbl 0372.35009 · doi:10.1063/1.523491 [13] Grillakis, M.G.: On nonlinear Schrödinger equations. Commun. Partial Differ. Equations 25, 1827–1844 (2000) · Zbl 0970.35134 · doi:10.1080/03605300008821569 [14] Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039 [15] Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equations 175, 353–392 (2001) · Zbl 1038.35119 · doi:10.1006/jdeq.2000.3951 [16] Keraani, S.: On the blow up phenomenon of the critical Schrödinger equation. J. Funct. Anal. 235, 171–192 (2006) · Zbl 1099.35132 · doi:10.1016/j.jfa.2005.10.005 [17] Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69, 427–454 (1993) · Zbl 0808.35141 · doi:10.1215/S0012-7094-93-06919-0 [18] Merle, F.: On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Comm. Pure Appl. Math. 45, 203–254 (1992) · Zbl 0767.35084 · doi:10.1002/cpa.3160450204 [19] Merle, F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Am. Math. Soc. 14, 555–578 (2001) · Zbl 0970.35128 · doi:10.1090/S0894-0347-01-00369-1 [20] Merle, F., Tsutsumi, Y.: L 2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J. Differ. Equations 84, 205–214 (1990) · Zbl 0722.35047 · doi:10.1016/0022-0396(90)90075-Z [21] Merle, F., Vega, L.: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Int. Math. Res. Not. 8, 399–425 (1998) · Zbl 0913.35126 · doi:10.1155/S1073792898000270 [22] Ogawa, T., Tsutsumi, Y.: Blow-up of H 1 solution for the nonlinear Schrödinger equation. J. Differ. Equations 92, 317–330 (1991) · Zbl 0739.35093 · doi:10.1016/0022-0396(91)90052-B [23] Raphael, P.: Existence and stability of a solution blowing-up on a sphere for a L 2 supercritical nonlinear Schrödinger equation. Duke Math. J. 134(2), 199–258 (2006) · Zbl 1117.35077 · doi:10.1215/S0012-7094-06-13421-X [24] Ryckman, E., Visan, M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $$\mathbb{R}$$1+4. To appear in Amer. J. Math. Preprint, http://arkiv.org/abs/math.AP/0501462 · Zbl 1160.35067 [25] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013 [26] Tao, T.: Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. New York J. Math. 11, 57–80 (2005) · Zbl 1119.35092 [27] Tao, T., Visan, M.: Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Differ. Equ. 118, 28 (2005) · Zbl 1245.35122 [28] Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Preprint, http://arkiv.org/abs/math.AP/0508298 · Zbl 1131.35081 [29] Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982/83) · Zbl 0527.35023 [30] Zhang, J.: Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations. Nonlinear Anal., Theory Methods Appl. 48, 191–207 (2002) · Zbl 1038.35131 · doi:10.1016/S0362-546X(00)00180-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.