zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compact and noncompact dispersive patterns. (English) Zbl 1115.35365
Summary: We discuss the pivotal role played by the nonlinear dispersion in shaping novel, compact and noncompact patterns. It is shown that if the normal velocity of a planar curve is $U= - (k^{n})_{s}$, $n>1$, where $k$ is the curvature, then the solitary disturbances may propagate like compactons. We extend the KP and the Boussinesq equations to include nonlinear dispersion to the effect that the new equations support compact and semi-compact solitary structures in higher dimensions. We also discuss the relations between equations sharing the same scaling. We show how compacton supporting equations may be cast into a strong formulation wherein one avoids dealing with weak solutions.

35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
Full Text: DOI
[1] P. PelcĂ© (Ed.), Dynamics of curved fronts, Academic Press, 1988. · Zbl 0712.76009
[2] Goldstein, R. E.; Petrich, D. M.: Phys. rev. Lett.. 67, 3203 (1991)
[3] Nakayama, K.; Wadati, M.: J. phys. Soc. jpn.. 62, 473 (1992)
[4] Nakayama, K.; Segur, H.; Wadati, M.: Phys. rev. Lett.. 69, 3425 (1992)
[5] Rosenau, P.; Hyman, J. M.: Phys. rev. Lett.. 70, 564 (1993)
[6] Rosenau, P.: Phys. rev. Lett.. 73, 1737 (1994)
[7] Rosenau, P.: Phys. lett. A. 230, 305 (1997) · Zbl 1052.35511
[8] Rosenau, P.: Phys. lett. A. 211, 265 (1996)
[9] Camassa, R.; Holm, D. D.: Phys. rev. Lett.. 71, 1661 (1993)
[10] J. Rubinstein, personal communication.
[11] P.G. Drazin, R.S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge, 1990. · Zbl 0661.35001
[12] Kichenassamy, S.; Olver, P. J.: SIAM J. Math. anal.. 23, 1141 (1992)
[13] Hyman, J. M.; Rosenau, P.: Phys. D. 123, 502 (1998)
[14] W. Choi, R. Camassa, to appear in J. Fluid Mech. · Zbl 0863.76015
[15] J.M. Hyman, P. Rosenau, in progress.
[16] Rosenau, P.: Phys. D. 123, 525 (1998)