×

Adaptive synchronization between two different chaotic dynamical systems. (English) Zbl 1115.37030

Summary: This work presents the synchronization between two different chaotic systems by using an adaptive feedback control scheme. The adaptive synchronization problem between an electrostatic system and electromechanical transducer is investigated. An adaptive linear feedback law with two controllers is proposed to ensure the global chaos synchronization of the nonlinear electrostatic and electromechanical systems. Numerical simulations results are presented to demonstrate the effectiveness of the proposed method.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93D21 Adaptive or robust stabilization
93B52 Feedback control
78A30 Electro- and magnetostatics
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821824 (1990) · Zbl 0938.37019
[2] Chen, G.; Dong, X., From chaos to order (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[3] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys Rev Lett, 64, 1196-1199 (1990) · Zbl 0964.37501
[4] Park, J. H.; Kwon, O. M., A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos, Solitons & Fractals, 23, 495-501 (2005) · Zbl 1061.93507
[5] Chua, L. O.; Itoh, M.; Kocarev, L.; Eckert, K., Chaos synchronization in Chua’s circuits, J Circuit Syst Comput, 3, 93-108 (1993)
[6] Chen, M.; Han, Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, Solitons & Fractals, 17, 709-716 (2003) · Zbl 1044.93026
[7] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Int J Bifur Chaos, 12, 2917-2926 (2002) · Zbl 1043.37026
[8] Lu, J.; Wu, X.; Lü, J., Synchronization of a unified chaotic system and the application in secure communication, Phys Lett A, 305, 365-370 (2002) · Zbl 1005.37012
[9] Bowong, S.; Moukam Kakmeni, F. M., Synchronization of uncertain chaotic systems via backstepping approach, Chaos, Solitons & Fractals, 21, 999-1011 (2004) · Zbl 1045.37011
[10] Li, D.; Lu, J. A.; Wu, X., Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos, Solitons & Fractals, 23, 79-85 (2005) · Zbl 1063.37030
[11] Lü, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons & Fractals, 14, 529-541 (2002) · Zbl 1067.37043
[12] Agiza, H. N.; Yassen, M. T., Synchronization of Rössler and Chen dynamical systems using active control, Phys Lett A, 278, 191-197 (2001) · Zbl 0972.37019
[13] Park, J. H., Stability criterion for synchronization of linearly coupled unified chaotic systems, Chaos, Solitons & Fractals, 23, 1319-1325 (2005) · Zbl 1080.37035
[14] Chen, H. K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos, Solitons & Fractals, 23, 1245-1251 (2005) · Zbl 1102.37302
[15] Wang, Y.; Guan, Z. H.; Wang, H. O., Feedback an adaptive control for the synchronization of Chen system via a single variable, Phys Lett A, 312, 34-40 (2003) · Zbl 1024.37053
[16] Park, J. H., On synchronization of unified chaotic systems via nonlinear control, Chaos, Solitons & Fractals, 25, 699-704 (2005) · Zbl 1125.93469
[17] Lu, J.; Wu, X.; Han, X.; Lü, J., Adaptive feedback synchronization of a unified chaotic system, Phys Lett A, 329, 327-333 (2004) · Zbl 1209.93119
[18] Han, X.; Lu, J. A.; Wu, X., Adaptive feedback synchronization of Lü systems, Chaos, Solitons & Fractals, 22, 217-221 (2004) · Zbl 1060.93524
[19] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M., Adaptive synchronization of Lü system with uncertain parameters, Chaos, Solitons & Fractals, 21, 657-667 (2004) · Zbl 1062.34039
[20] Park, J. H., Adaptive synchronization of a unified chaotic systems with an uncertain parameter, Int J Nonlinear Sci Numer Simulat, 6, 201-206 (2005) · Zbl 1401.93123
[21] Genesio, R.; Tesi, A., A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica, 28, 531-548 (1992) · Zbl 0765.93030
[22] Ho, M. C.; Hung, Y. C., Synchronization of two different systems by using generalized active control, Phys Lett A, 301, 424-428 (2002) · Zbl 0997.93081
[23] Yassen, M. T., Chaos synchronization between two different chaotic systems using active control, Chaos, Solitons & Fractals, 23, 131-140 (2005) · Zbl 1091.93520
[24] Fotsin, H.; Bowong, S.; Daafouz, J., Adaptive synchronization of two chaotic systems consisting of modified Van der Pol-Duffing and Chua oscillators, Chaos, Solitons & Fractals, 26, 215-229 (2005) · Zbl 1122.93069
[25] Bowong, S.; Moukam Kakmeni, F. M., Stability and duration time of chaos synchronization of a class of nonidentical oscillators, Phys Scripta, 68, 326-332 (2003) · Zbl 1063.70021
[26] Woafo, P., Transitions to chaos and synchronization in a nonlinear emitter-receiver system, Phys Lett A, 267, 31-39 (2000)
[27] Yamapi, R.; Chabi Orou, J. B.; Woafo, P., Harmonic oscillations, stability and chaos control in a non-linear electromechanical system, J Sound Vibr, 259, 5, 1253-1264 (2003) · Zbl 1237.34070
[28] Khalil, H. K., Nonlinear systems (1995), Springer-Verlag: Springer-Verlag United Kingdom
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.