Cassaigne, J.; Hubert, Pascal; Troubetzkoy, Serge Complexity and growth for polygonal billiards. (English) Zbl 1115.37312 Ann. Inst. Fourier 52, No. 3, 835-847 (2002). Summary: We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth. Cited in 10 Documents MSC: 37C35 Orbit growth in dynamical systems Keywords:complexity; polygonal billiards; generalized diagonals; bispecial words × Cite Format Result Cite Review PDF Full Text: DOI arXiv Numdam EuDML References: [1] Billiards in polygons, Ann. Prob., 6, 532-540 (1978) · Zbl 0377.28014 · doi:10.1214/aop/1176995475 [2] A geometric proof of the enumeration formula for Sturmian words, J. Alg. Comp., 3, 349-355 (1993) · Zbl 0802.68099 · doi:10.1142/S0218196793000238 [3] Complexité et facteurs spéciaux, Bull. Belgian Math. Soc., 4, 67-88 (1997) · Zbl 0921.68065 [4] Ergodicity of billiards in polygons with pockets, Nonlinearity, 11, 1095-1102 (1998) · Zbl 0906.58022 · doi:10.1088/0951-7715/11/4/019 [5] Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., 169, 463-473 (1995) · Zbl 0924.58043 · doi:10.1007/BF02099308 [6] Billiards in polygons, Physica D, 19, 311-333 (1986) · Zbl 0593.58016 · doi:10.1016/0167-2789(86)90062-X [7] Billiards in polygons: survey of recent results, J. Stat. Phys., 174, 43-56 (1995) · Zbl 1081.37525 [8] Topological entropy of generalized interval exchanges, Bull. AMS, 32, 50-57 (1995) · Zbl 0879.54023 · doi:10.1090/S0273-0979-1995-00555-0 [9] Directional flows and strong recurrence for polygonal billiards, Proceedings of the International Congress of Dynamical Systems, Montevideo, Uruguay, 362 (1996) · Zbl 0904.58036 [10] Dynamique symbolique des billards polygonaux rationnels (1995) [11] Complexité des suites définies par des billards rationnels, Bull. Soc. Math. France, 123, 257-270 (1995) · Zbl 0836.58013 [12] Propriétés combinatoires des suites définies par le billard dans les triangles pavants, Theoret. Comput. Sci., 164, 165-183 (1996) · Zbl 0871.68146 · doi:10.1016/0304-3975(95)00208-1 [13] An introduction to the theory of numbers (1964) · Zbl 0058.03301 [14] The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys., 111, 151-160 (1987) · Zbl 0631.58020 · doi:10.1007/BF01239021 [15] The growth rate of a quadratic differential, Ergod. Th. Dyn. Sys., 10, 151-176 (1990) · Zbl 0706.30035 [16] Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, vol. 1 (1988) · Zbl 0661.30034 [17] On the number of factors of Sturmian words, Theor. Comp. Sci., 82, 71-84 (1991) · Zbl 0728.68093 · doi:10.1016/0304-3975(91)90172-X [18] Rational billiards and flat structures (1999) · Zbl 1057.37034 [19] Orbit distribution on \(\mathbb{R}^2\) under the natural action of \({SL}(2,\mathbb{Z}) (2000)\) · Zbl 1016.37003 [20] Introduction to ergodic theory (1976) · Zbl 0375.28011 [21] Billiards, Panoramas et Synthèses (1995) · Zbl 0833.58001 [22] Complexity lower bounds for polygonal billiards, Chaos, 8, 242-244 (1998) · Zbl 0986.37030 · doi:10.1063/1.166301 [23] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., 97, 553-583 (1989) · Zbl 0676.32006 · doi:10.1007/BF01388890 [24] The billiard in a regular polygon, Geom. Func. Anal., 2, 341-379 (1992) · Zbl 0760.58036 · doi:10.1007/BF01896876 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.