Reduction of Courant algebroids and generalized complex structures. (English) Zbl 1115.53056

The authors study the reduction of generalized geometrical structures such as Dirac structures and generalized complex structures. Generally speaking, the quotient of a space does not inherit the same type of geometry as the original space; however it can be usefull to consider a reduction for this to occur. In this paper, the authors present a theory of reduction for Courant algebroids and Dirac structures. Extended actions and a generalized notion of moment map are then considered. Finally, generalized Kähler reduction is studied.


53D17 Poisson manifolds; Poisson groupoids and algebroids
53D10 Contact manifolds (general theory)
Full Text: DOI arXiv Link


[1] Baez, J.; Crans, A., Higher-dimensional algebra VI: Lie 2-algebras · Zbl 1057.17011
[2] Blankenstein, G.; van der Schaft, A.J., Symmetry and reduction in implicit generalized Hamiltonian systems, Rep. math. phys., 47, 57-100, (2001) · Zbl 0978.37046
[3] Bursztyn, H.; Crainic, M., Dirac structures, momentum maps, and quasi-Poisson manifolds, (), 1-40 · Zbl 1079.53123
[4] Bursztyn, H.; Radko, O., Gauge equivalence of Dirac structures and symplectic groupoids, Ann. inst. Fourier (Grenoble), 53, 309-337, (2003) · Zbl 1026.58019
[5] Courant, T., Dirac manifolds, Trans. amer. math. soc., 319, 631-661, (1990) · Zbl 0850.70212
[6] Courant, T.; Weinstein, A., Beyond Poisson structures, (), 39-49
[7] Figueroa-O’Farill, J.; Mohammedi, N., Gauging the Wess-Zumino term of a sigma model with boundary
[8] Figueroa-O’Farill, J.; Stanciu, S., Equivariant cohomology and gauged bosonic sigma models
[9] Gualtieri, M., Generalized complex geometry, Oxford D. Phil. thesis · Zbl 1235.32020
[10] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. math., 67, 515-538, (1982) · Zbl 0503.58018
[11] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. math., 54, 281-308, (2003) · Zbl 1076.32019
[12] Hitchin, N., Instantons, Poisson structures and generalized Kaehler geometry · Zbl 1110.53056
[13] Hu, S., Hamiltonian symmetries and reduction in generalized geometry · Zbl 1183.53077
[14] Hull, C.; Spence, B., The gauged nonlinear sigma model with Wess-Zumino term, Phys. lett. B, 232, 204-210, (1989)
[15] Hull, C.; Roček, M.; de Wit, B., New topological terms in gauge-invariant actions, Phys. lett. B, 184, 233, (1987)
[16] Keller, F.; Waldmann, S., Formal deformations of Dirac structures · Zbl 1112.58018
[17] Kinyon, M.; Weinstein, A., Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. math., 123, 525-550, (2001) · Zbl 0986.17001
[18] Kirwan, F., Cohomology of quotients in symplectic and algebraic geometry, (1984), Princeton Univ. Press · Zbl 0553.14020
[19] Lada, T.; Stasheff, J., Introduction to sh Lie algebras for physicists, Internat. J. theoret. phys., 32, 1087-1103, (1993) · Zbl 0824.17024
[20] Lin, Y.; Tolman, S., Symmetries in generalized Kähler geometry · Zbl 1120.53049
[21] Liu, Z.-J.; Weinstein, A.; Xu, P., Manin triples for Lie algebroids, J. differential geom., 45, 547-574, (1997)
[22] Liu, Z.-J.; Weinstein, A.; Xu, P., Dirac structures and Poisson homogeneous spaces, Comm. math. phys., 192, 121-144, (1998) · Zbl 0921.58074
[23] Loday, J.-L., Une version non commutative des algèbres de Lie : LES algèbres de Leibniz, Enseign. math., 39, 613-646, (1993)
[24] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. math. phys., 5, 121-130, (1974) · Zbl 0327.58005
[25] Roytenberg, D.; Weinstein, A., Courant algebroids and strongly homotopy Lie algebras, Lett. math. phys., 46, 1, 81-93, (1998) · Zbl 0946.17006
[26] Ševera, P.; Weinstein, A., Poisson geometry with a 3-form background, Progr. theoret. phys. suppl., 144, 145-154, (2001) · Zbl 1029.53090
[27] Stïenon, M.; Xu, P., Reduction of generalized complex structures · Zbl 1136.53058
[28] Sussmann, H., Orbits of families of vector fields and integrability of distributions, Trans. amer. math. soc., 180, 171-188, (1973) · Zbl 0274.58002
[29] Vaisman, I., Reduction and submanifolds of generalized complex manifolds · Zbl 1126.53049
[30] Weinstein, A., Lectures on symplectic manifolds, CBMS reg. conf. ser. math., vol. 29, (1979), Amer. Math. Soc. Providence, RI
[31] Weinstein, A., Omni-Lie algebras, (), 95-102, (Japanese) · Zbl 1058.58503
[32] Witten, E., Topological sigma models, Comm. math. phys., 118, 411-449, (1988) · Zbl 0674.58047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.