×

zbMATH — the first resource for mathematics

Unrecognizability of manifolds. (English) Zbl 1115.57014
A celebrated result of A. Markov [Dokl. Akad. Nauk SSSR 121, 218–220 (1958; Zbl 0092.00702)] says that for every \(n\geq 4\) the homeomorphism problem for \(n\)-dimensional manifolds (given, for instance, as finite simplicial complexes) is (Turing-)undecidable. The authors sketch a new proof, extending ideas of M. A. Shtan’ko [Izv. Math. 68, No. 1, 205–221 (2004; Zbl 1069.57013)]. Additionally, it is shown that each \(n\)-manifold is unrecognizable within the class of all \(n\)-manifolds, provided that \(n\geq 5\). This strengthens a result of S. P. Novikov on the non-recognizability of spheres in dimension five and above. All results are based on the unsolvability of the isomorphism problem for finitely presented groups.

MSC:
57Q25 Comparison of PL-structures: classification, Hauptvermutung
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adian, S.I., Algorithmic unsolvability of recognition problems of certain properties of groups, Dokl. akad. nauk SSSR, 103, 4, 533-535, (1955), (in Russian)
[2] Adian, S.I.; Durnev, I.G., Algorithmic problems for groups and semigroups, Uspekhi mat. nauk, 55, 2, 3-94, (2000), (in Russian) · Zbl 0958.20029
[3] Bestvina, M.; Handel, M., Train-tracks for surface homeomorphisms, Topology, 34, 1, 109-140, (1995) · Zbl 0837.57010
[4] Boone, W.W.; Haken, W.; Poenaru, V., On the recursively unsolvable problems in topology and their classification, () · Zbl 0246.57015
[5] Borisov, V.V., Simple examples of groups with unsolvable word problems, Mat. zametki, 6, 521-532, (1969), (in Russian)
[6] Chernavsky, A.V.; Lexin, V.P., Unrecognizability of manifolds. to the novikov’s theorem on the unrecognizability of the \(n\)-sphere \(\mathbb{S}^n\) for \(n \geq 5\), Dokl. akad. nauk, 391, 4, 453-455, (2003), (in Russian)
[7] Dynnikov, I.A., Algorithms of recognizability in the knot theory, Uspekhi mat. nauk, 58, 6, 45-92, (2003), (in Russian) · Zbl 1063.57005
[8] Eckmann, B.; Hilton, P.J.; Stammbach, U., On the homology theory of central group extensions: I—the commutator map and stem extensions, Comment. math. helv., 47, Fasc. 1, 102-122, (1972) · Zbl 0236.20038
[9] Fomenko, A.T.; Volodin, I.A., Manifolds. knots. algorithms, (), (in Russian) · Zbl 0555.57001
[10] Ganea, T., Homologie et extensions centrales de groupes, C.R. acad. sci. Paris, 266, 557-558, (1968) · Zbl 0175.29702
[11] Grushko, I.A., On bases of the free product of groups, Mat. sb., 8, 169-182, (1940), (in Russian)
[12] Haken, W., Theorie der normalflaechen, Acta math., 105, 245-375, (1961)
[13] Homma, T.; Ochiai, M.; Takahashi, M., An algorithm for recognition \(S^3\) in 3-manifolds with Heegaard splitting of genus two, Osaka J. math., 17, 625-648, (1980) · Zbl 0454.57002
[14] Hopf, H., Fundamentalgruppe und zweite bettische gruppe, Comment math. helv., 14, 257-309, (1942) · JFM 68.0503.01
[15] Jaco, W.; Oertel, U., An algorithm to decide if a 3-manifold is a haken manifold, Topology, 23, 3, 195-209, (1984) · Zbl 0545.57003
[16] Magnus, W.; Karrass, A.; Solitar, D., Combinatorial group theory, (1966), John Wiley and Sons, Inc. New York, London, Sydney
[17] Markov, A.A., The unsolvability of the homeomorphy problem, Dokl. akad. nauk SSSR, 121, 2, 218-220, (1958), (in Russian) · Zbl 0092.00702
[18] Markov, A.A., On unsolvability of certain problems of topology, Dokl. akad. nauk SSSR, 123, 6, 978-980, (1958), (in Russian) · Zbl 0090.01202
[19] Markov, A.A., Unsolvability of homeomorphy problem, (), 300-306
[20] Massey, W.S., Algebraic topology: an introduction, (1967), Harcourt, Brace and Wold, Inc. · Zbl 0153.24901
[21] Matveev, S.V., Algorithmic topology classification of 3-manifolds, Algorithms comput. math., 9, (2003) · Zbl 1048.57001
[22] S.V. Matveev, On the recognition problem for Haken manifolds, in: Proc. Workshop Diff. Geom. Topol., Palermo, 1996, Rend. Circ. Mat. Palermo (2) Suppl. (49) (1996) 131-148 · Zbl 0902.57021
[23] Miller III, C.F., Decision problems for groups—survey and reflections, () · Zbl 0752.20014
[24] Miller III, C.F., On group theoretic decision problems and their classification, () · Zbl 0277.20054
[25] Novikov, P.S., On the algorithmic unsolvability of the problem of identity, Dokl. akad. nauk SSSR, 85, 5, 709-712, (1952), (in Russian)
[26] Rabin, M.O., Recursive unresolvability of group theoretic problems, Ann. of math., 67, 172-194, (1958) · Zbl 0079.24802
[27] Rourke, C.P.; Sanderson, B.J., Introduction to piecewise linear topology, Ergeb. math., 69, (1972) · Zbl 0254.57010
[28] Seifert, H.; Threlfall, W., Topologie, (1934)
[29] Smale, S., Structure of manifolds, Amer. J. math., 84, 387-399, (1962) · Zbl 0109.41103
[30] Smale, S., Generalized Poincaré conjecture in dimensions greater than 4, Ann. of math., 74, 391-406, (1961) · Zbl 0099.39202
[31] A.B. Sossinsky, Could the Poincaré conjecture be false? in: Proceedings of the Steklov Institute of Mathematics, vol. 247, 2004, pp. 227-251
[32] Stallings, J.R., On the recursiveness of presentations of 3-manifold groups, Fund. math., 51, 191-194, (1962) · Zbl 0121.40006
[33] Stallings, J.R., Group theory and three dimensional manifolds, (1971), Yale University Press New Haven and London · Zbl 0241.57001
[34] Stan’ko, M.A., Markov theorem, Izv. ross. akad. nauk ser. mat., 68, 1, (2004), (in Russian) · Zbl 1152.57022
[35] Thurston, W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. amer. math. soc., 6, 3, 357-381, (1982) · Zbl 0496.57005
[36] Thompson, A., Thin position and the recognition problem for \(S^3\), Math. res. lett., 1, 5, 613-630, (1994) · Zbl 0849.57009
[37] Volodin, I.A.; Kuznetsov, V.E.; Fomenko, A.T., On recognition problem of standard 3-sphere, Uspekhi mat. nauk, 32, 5, 71-168, (1977), (in Russian) · Zbl 0303.57002
[38] Waldhausen, F., Eine klasse von 3-dimensionalen mannigfaltigkeiten, I,II, Invent. math., 3, 308-333, (1967), 4 (1967) 87-117 · Zbl 0168.44503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.