×

zbMATH — the first resource for mathematics

A numerical algorithm for a Signorini problem associated with Maxwell-Norton materials by using generalized Newton’s methods. (English) Zbl 1115.74046
Summary: We present new numerical approaches to obtain computationally efficient adaptive procedures to solve contact problems associated with Maxwell-Norton materials. We describe in detail the numerical methods used to solve such problems and derive iterative algorithms. To validate the proposed algorithms, we present some test examples with known analytical solutions. Finally, we compare the efficiency of the algorithms presented in this paper with others previously proposed by the authors [P. Barral and P. Quintela, ibid. 178, No. 1–2, 69–88 (1999; Zbl 0973.74076); P. Barral and P. Quintela, Finite Elem. Anal. Des. 34, No. 2, 125–143 (2000; Zbl 1023.74042)].

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74M15 Contact in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Barral, Análisis matemático y simulación numérica del comportamiento termomecánico de una colada de aluminio, Ph.D. thesis, Department of Applied Mathematics, University of Santiago de Compostela, 2001.
[2] Barral, P.; Bermúdez, A.; Muñiz, M.C.; Otero, M.V.; Quintela, P.; Salgado, P., Numerical simulation of some problems related to aluminium casting, J. mater. process. technol., 142, 383-399, (2003)
[3] Barral, P.; Quintela, P., A numerical algorithm for prediction of thermomechanical deformation during the casting of aluminium alloy ingots, Finite elem. anal. des., 34, 125-143, (2000) · Zbl 1023.74042
[4] Barral, P.; Quintela, P., A numerical method for simulation of thermal stresses during casting of aluminium slabs, Comput. methods appl. mech. engrg., 178, 69-88, (1999) · Zbl 0973.74076
[5] Barral, P.; Quintela, P., Existence of solution for a contact problem of Signorini type in Maxwell-norton materials, IMA J. appl. math., 67, 525-549, (2002) · Zbl 1026.74051
[6] Bermúdez, A.; Moreno, C., Duality methods for solving variational inequalities, Comput. math. appl., 7, 43-58, (1981) · Zbl 0456.65036
[7] Bertsekas, D.P., Nonlinear programming, (1995), Athena Scientific Belmont · Zbl 0935.90037
[8] Brezis, H., Analyse fonctionnelle. theorie and applications, (1983), Masson Paris · Zbl 0511.46001
[9] Djaoua, M.; Suquet, P., Évolution quasi-statique des milieux visco-plastiques de Maxwell-norton, Math. methods appl. sci., 6, 2, 192-205, (1984) · Zbl 0563.73024
[10] Burguera, M.; Viaño, J.M., Numerical solving of frictionless contact problems in perfectly plastic bodies, Comput. methods appl. mech. engrg., 121, 303-322, (1995) · Zbl 0851.73055
[11] Facchinei, F.; Pang, J.S., Finite-dimensional variational inequalities and complementarity problems, (2003), Springer Verlag New York · Zbl 1062.90002
[12] Friaâ, A., Le matériau de norton-hoff généralisé et ses applications en analyse limite, C.R. acad. sci. Paris ser. A, 286, 953-956, (1978) · Zbl 0374.73041
[13] Geymonat, G.; Suquet, P., Functional spaces for norton-hoff materials, Math. methods appl. sci., 8, 206-222, (1986) · Zbl 0616.73010
[14] R. Glowinski, P. Le Tallec, Augmented lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, Philadelphia, 1989. · Zbl 0698.73001
[15] Ionescu, I.R.; Sofonea, M., Quasistatic processes for elastic-viscoplastic materials, Quart. appl. math., 46, 229-243, (1988) · Zbl 0658.73024
[16] N. Kikuchi, J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, Philadelphia, 1988. · Zbl 0685.73002
[17] Panagiotopoulos, P.D., Inequality problems in mechanics and applications: convex and nonconvex energy functions, (1985), Birkhuser Boston · Zbl 0579.73014
[18] Pang, J.S., A B-differentiable equation based, globally and locally quadratically convergent algorithm for nonlinear programs, complementary and variational inequality problems, Math. program., 51, 101-132, (1991) · Zbl 0733.90063
[19] Parés, C.; Castro, M.; Macı́as, J., On the convergence of the bermúdez-moreno algorithm with constant parameters, Numer. math., 92, 113-128, (2002) · Zbl 1003.65069
[20] Robinson, S.M., Newton’s method for a class of nonsmooth equations, Set-valued anal., 2, 291-305, (1994) · Zbl 0804.65062
[21] Sofonea, M., On a contact problem for elastic-viscoplastic bodies, Nonlinear anal., 29, 1037-1050, (1997) · Zbl 0918.73098
[22] Sun, D., A further result on an implicit function theorem for locally Lipschitz functions, Oper. res. lett., 28, 193-198, (2001) · Zbl 1006.49009
[23] Wriggers, P., Finite element algorithms for contact problems, Arch. comput. methods engrg., 2, 4, 1-49, (1995)
[24] Zeidler, E., Nonlinear functional analysis and its applications, (1990), Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.