zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of a class of solitary waves in compressible elastic rods. (English) Zbl 1115.74339
Summary: We prove that the solitary waves of a model for nonlinear dispersive waves in cylindrical compressible hyperelastic rods are orbitally stable. This establishes that the shape of the wave is stable.

74J35Solitary waves (solid mechanics)
35B35Stability of solutions of PDE
35Q51Soliton-like equations
74J30Nonlinear waves (solid mechanics)
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
Full Text: DOI
[1] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973. · Zbl 0268.73005
[2] Benjamin, B.; Bona, J.; Mahony, J.: Phil. trans. R. soc. (London). 272, 47 (1972)
[3] Camassa, R.; Holm, D.: Phys. rev. Lett.. 71, 1661 (1993)
[4] Constantin, A.; Escher, J.: Ann. sci. Norm. sup. Pisa. 26, 303 (1998)
[5] Constantin, A.; Escher, J.: Acta math.. 181, 229 (1998)
[6] Constantin, A.; Mckean, H. P.: Commun. pure appl. Math.. 52, 949 (1999)
[7] A. Constantin, L. Molinet, Orbital stability of the solitary waves for a shallow water equation, preprint 1998. · Zbl 0984.35139
[8] A. Constantin, W. Strauss, Stability of peakons, Commun. Pure Appl. Math., in press. · Zbl 1049.35149
[9] Dai, H. -H.: Acta mech.. 127, 293 (1998)
[10] H.-H. Dai, Y. Huo, Solitary shock waves and other travelling waves in general compressible hyperelastic rod, Proc. R. Soc. (London), in press. · Zbl 1004.74046
[11] R. Dodd, J. Eilbeck, J. Gibbon, H. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, 1984.
[12] N. Dunford, J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space, Wiley, New York, 1988. · Zbl 0635.47002
[13] Fokas, A. S.; Fuchssteiner, B.: Phys. D. 4, 47 (1981)
[14] Grillakis, M.; Shatah, J.; Strauss, W.: J. funct. Anal.. 74, 160 (1987)
[15] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, Springer Lecture Notes in Mathematics, vol. 448, 1975, pp. 25--70.
[16] A.M. Samsonov, Nonlinear strain waves in elastic waveguides, in: Nonlinear Waves in Solids, CISM Courses and Lectures, Springer, Vienna, 1994, pp. 349--382. · Zbl 0806.73018
[17] Souganidis, P.; Strauss, W.: Proc. R. Soc. (Edinburgh). 114A, 195 (1990)