Stability of a class of solitary waves in compressible elastic rods. (English) Zbl 1115.74339

Summary: We prove that the solitary waves of a model for nonlinear dispersive waves in cylindrical compressible hyperelastic rods are orbitally stable. This establishes that the shape of the wave is stable.


74J35 Solitary waves in solid mechanics
35B35 Stability in context of PDEs
35Q51 Soliton equations
74J30 Nonlinear waves in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI


[2] Benjamin, B.; Bona, J.; Mahony, J., Phil. Trans. R. Soc. (London), 272, 47 (1972)
[3] Camassa, R.; Holm, D., Phys. Rev. Lett., 71, 1661 (1993)
[4] Constantin, A.; Escher, J., Ann. Sci. Norm. Sup. Pisa, 26, 303 (1998)
[5] Constantin, A.; Escher, J., Acta Math., 181, 229 (1998)
[6] Constantin, A.; McKean, H. P., Commun. Pure Appl. Math., 52, 949 (1999)
[9] Dai, H.-H., Acta Mech., 127, 293 (1998)
[13] Fokas, A. S.; Fuchssteiner, B., Phys. D, 4, 47 (1981)
[14] Grillakis, M.; Shatah, J.; Strauss, W., J. Funct. Anal., 74, 160 (1987)
[17] Souganidis, P.; Strauss, W., Proc. R. Soc. (Edinburgh), 114A, 195 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.