zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact solutions of the Schrödinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential. (English) Zbl 1115.81332
Summary: Exact solutions of the Schrödinger equation for two `deformed hyperbolic potentials’ that were introduced by {\it H. Arai} [J. Math. Anal. Appl. 158, No. 1, 63--79 (1991; Zbl 0731.47055)] have been obtained by using an analytical solution method which has been developed by {\it A. F. Nikiforov} and {\it V. B. Uvarov} [Special Functions of Mathematical Physics. Basel: Birkhäuser (1988; Zbl 0624.33001)] for the solutions of the differential equations of hypergeometric type in which the solutions are special functions.

81Q05Closed and approximate solutions to quantum-mechanical equations
33D90Applications of basic hypergeometric functions
34L40Particular ordinary differential operators
Full Text: DOI
[1] Arai, A.: J. math. Anal. appl.. 158, 63 (1991)
[2] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988.
[3] Eğrifes, H.; Demirhan, D.; Büyükkılıç, F.: Physica scripta. 59, 90 (1999)
[4] Eğrifes, H.; Demirhan, D.; Büyükkılıç, F.: Physica scripta. 60, 195 (1999)
[5] Natanzon, G. A.: Teor. mat. Fiz.. 38, 146 (1979)
[6] V.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations, Kluwer Academic Publishers, Dordrecht, 1990. · Zbl 0723.35066
[7] Pertsch, D.: J. phys. A. 23, 4145 (1990) · Zbl 0719.35077
[8] Büyükkılıç, F.; Egrifes, H.; Demirhan, D.: Theor. chim. Acta. 98, 192 (1997)
[9] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 1966, p. 213. · Zbl 0143.08502
[10] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1990. · Zbl 45.0433.02
[11] L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory, third Ed.), Pergamon Press, Oxford, 1987. · Zbl 0178.57901
[12] M. Şimşek, S. Özçelik, Phys. Lett. A 186 (1994) 35.
[13] S. Flügge, Practical Quantum Mechanics, vol. I, Springer, Berlin, 1974, p. 175.
[14] Konwent, H.: Phys. lett. A. 118, 467 (1986)
[15] Konwent, H.; Machnikowski, P.; Radosz, A.: J. phys. A. 28, 3757 (1995) · Zbl 0859.34069