Chua, Vivien P.; Porter, Mason A. Spatial resonance overlap in Bose–Einstein condensates in superlattice potentials. (English) Zbl 1115.82304 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 4, 945-959 (2006). Summary: We employ Chirikov’s overlap criterion to investigate interactions between subharmonic resonances of coherent structure solutions of the Gross–Pitaveskii (GP) equation governing the mean-field dynamics of cigar-shaped Bose–Einstein condensates in optical superlattices. We apply a standing wave ansatz to the GP equation to obtain a parametrically forced Duffing equation describing the BEC’s spatial dynamics. We then investigate analytically the dependence of spatial resonances on the depth of the superlattice potential, deriving an order-of-magnitude estimate for the critical depth at which spatial resonances with respect to different lattice harmonics first overlap. We also derive a formula for the size of resonance zones and examine changes in our estimates as the relative superlattice amplitudes corresponding to the different harmonics are adjusted. We investigate the onset of global chaos and support our analytical work with numerical simulations. Cited in 2 Documents MSC: 82B10 Quantum equilibrium statistical mechanics (general) 81V45 Atomic physics 37K60 Lattice dynamics; integrable lattice equations Keywords:Bose–Einstein condensates; Hamiltonian systems; Chirikov’s overlap criterion PDF BibTeX XML Cite \textit{V. P. Chua} and \textit{M. A. Porter}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 4, 945--959 (2006; Zbl 1115.82304) Full Text: DOI References: [1] DOI: 10.1126/science.282.5394.1686 [2] DOI: 10.1126/science.269.5221.198 [3] DOI: 10.1088/0953-4075/35/24/312 [4] DOI: 10.1103/PhysRevA.67.023602 [5] DOI: 10.1103/PhysRevE.64.056615 [6] DOI: 10.1103/PhysRevLett.86.1402 [7] DOI: 10.1103/PhysRevE.63.036612 [8] DOI: 10.1103/PhysRevLett.85.86 [9] DOI: 10.1016/S0167-2789(01)00355-4 · Zbl 0996.35071 [10] DOI: 10.1063/1.882899 [11] Cataliotti F. S., New J. Phys. 5 pp 71.1– [12] DOI: 10.1103/RevModPhys.71.463 [13] DOI: 10.1103/PhysRevLett.75.3969 [14] DOI: 10.1038/35085500 [15] DOI: 10.1016/j.optcom.2004.10.036 [16] Goldstein H., Classical Mechanics (1980) [17] DOI: 10.1038/415039a [18] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001 [19] DOI: 10.1063/1.882898 [20] DOI: 10.1103/PhysRevLett.89.210404 [21] DOI: 10.1007/978-1-4757-3980-0 [22] DOI: 10.1007/978-1-4757-2184-3 [23] DOI: 10.1088/1464-4266/6/5/020 [24] DOI: 10.1103/PhysRevA.71.023612 [25] DOI: 10.1103/PhysRevLett.87.140402 [26] DOI: 10.1126/science.1058149 [27] DOI: 10.1103/PhysRevLett.87.220401 [28] DOI: 10.1103/PhysRevA.67.051603 [29] Pethick C. J., Bose–Einstein Condensation in Dilute Gases (2002) [30] Porter M. A., Phys. Rev. E pp 047201– [31] DOI: 10.1063/1.1779991 · Zbl 1080.82017 [32] DOI: 10.1137/040610611 · Zbl 1145.82309 [33] DOI: 10.1016/j.physleta.2005.11.074 · Zbl 1187.78056 [34] DOI: 10.1098/rsta.2003.1211 [35] Rand R. H., Computation in Education: Mathematics, Science and Engineering 1, in: Topics in Nonlinear Dynamics with Computer Algebra (1994) [36] DOI: 10.1103/PhysRevA.69.033610 [37] DOI: 10.1088/0953-4075/35/14/315 [38] DOI: 10.1103/PhysRevLett.89.170402 [39] DOI: 10.1103/PhysRevLett.93.220502 [40] DOI: 10.1023/A:1017931712099 · Zbl 1003.34041 [41] DOI: 10.1016/S0020-7462(00)00095-0 · Zbl 1116.34322 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.